8 класс

Задача 1.1. Однажды в солнечный день Аля пошла гулять на стадион, а Валя - в парк. Аля двигалась в полтора раза быстрее подруги и прошла в два раза большее расстояние, чем Валя. Прогулка Али заняла на 40 минут больше, чем прогулка Вали. Сколько времени гуляла Аля? Ответ выразите в минутах.

Ответ: 160

Решение. Пусть Валя гуляла со скоростью v, и прогулка заняла у неё t минут. Тогда она прошла расстояние tv. Аля двигалась со скоростью 1, 5v и на 40 минут больше, а значит, она прошла расстояние 1, 5v(t+40). Раз она прошла в 2 раза больше чем Валя, получаем уравнение 1, 5v(t+40) = 2tv. Значит, 0, 5tv = 60v, откуда t = 120. Таким образом, Аля гуляла t+40 = 160 минут.

Критерии

Точное совпадение ответа – 7 баллов.

Задача 1.2. Однажды в солнечный день Аля пошла гулять на стадион, а Валя - в парк. Аля двигалась в полтора раза быстрее подруги и прошла в четыре раза большее расстояние, чем Валя. Прогулка Али заняла на 3 часа 20 минут больше, чем прогулка Вали. Сколько времени гуляла Аля? Ответ выразите в минутах.

Ответ: 320

Задача 1.3. Однажды в солнечный день Аля пошла гулять на стадион, а Валя - в парк. Аля двигалась в два раза быстрее подруги и прошла в полтора раза большее расстояние, чем Валя. Прогулка Али заняла на 35 минут меньше, чем прогулка Вали. Сколько времени гуляла Аля? Ответ выразите в минутах.

Ответ: 105

Задача 1.4. Однажды в солнечный день Аля пошла гулять на стадион, а Валя - в парк. Аля двигалась в два раза быстрее подруги и прошла в пять раз большее расстояние, чем Валя. Прогулка Али заняла на 45 минут больше, чем прогулка Вали. Сколько времени гуляла Аля? Ответ выразите в минутах.

Ответ: 75

Задача 2.1. На рисунке выберите несколько из отмеченных точек так, чтобы на каждой из шести прямых было выбрано **ненулевое** чётное количество точек.

Ответ: Три варианта: 1) всё, кроме F и H, 2) всё, кроме B и D, 3) всё, кроме A и E. Засчитывается дюбой из них

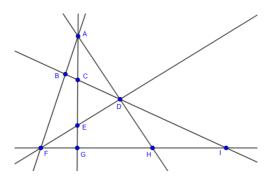


Рис. 1: К задаче 2.1

Pешение. Предположим, что точка A отмечена. Тогда из точек B и F должна быть отмечена ровно одна, т.к. на прямой ABF должно быть отмечено 2 точки.

Пусть отмечена точка B, а точка F не отмечена. Тогда на прямой FED должны быть отмечены точки E и D. Значит, на прямой ADH уже отмечены 2 точки, поэтому H должна быть не отмечена. Тогда на прямой FGHI точки F и H не отмечены, поэтому G и I должны быть отмечены. Тогда точка C должна быть отмечена (из рассмотрения прямой ACEG). Получаем, что в этом случае должны быть отмечены все точки кроме F и H, и такой вариант подходит.

Пусть теперь точка B не отмечена, а точка F отмечена. Посмотрим на прямую FED. Кроме точки F должна быть отмечена ещё ровно одна. Пусть это будет E. Тогда на прямой BCDI точки B и D не отмечены, а значит, C и I отмечены. Тогда на прямой ACEG уже отмечены 3 точки, а значит, должна быть отмечена и G. Аналогично, на ADH отмечена одна точка, значит, должна быть отмечена и H. В этом случае должны быть отмечены все точки кроме B и D, и такой случай подходит.

Пусть теперь на FED отмечена точка D. Тогда из прямой ADH получаем, что H не отмечена. Тогда на прямых ACEG, BCDI и FGHI уже отмечено по одной точке, а значит, должно быть отмечено ещё по одной. При этом, можно отметить только точки C, G и I. Легко понять, что это сделать невозможно.

Если же точка A не отмечена, то точки B и F (ABF) должны быть отмечены. Аналогично, точки D и H тоже должны быть отмечены (ADH). Значит, точка E не должна быть отмечена (FED). Тогда точки C и G должны быть отмечены (ACEG), и наконец, точка I должна быть отмечена (BCDI). Значит, должны быть отмечены все точки кроме A и E, и такой вариант подходит.

П

Итого получили 3 подходящих варианта.

Критерии

Приведен любой из верных ответов – 7 баллов.

Задача 2.2. На рисунке выберите несколько из отмеченных точек так, чтобы на каждой из шести прямых было выбрано **ненулевое** чётное количество точек.

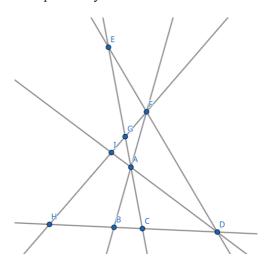


Рис. 2: К задаче 2.2

 $\it Omsem$: Три варианта: 1) всё, кроме $\it F$ и $\it I,$ 2) всё, кроме $\it B$ и $\it D,$ 3) всё, кроме $\it A$ и $\it E.$ Засчитывать любой из них

Задача 2.3. На рисунке выберите несколько из отмеченных точек так, чтобы на каждой из шести прямых было выбрано **ненулевое** чётное количество точек.

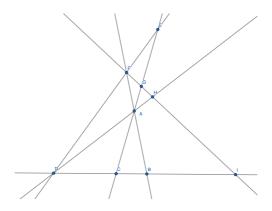


Рис. 3: К задаче 2.3

Ответ: Три варианта: 1) всё, кроме F и H, 2) всё, кроме B и D, 3) всё, кроме A и E. Засчитывать любой из них

Задача 2.4. На рисунке выберите несколько из отмеченных точек так, чтобы на каждой из шести прямых было выбрано **ненулевое** чётное количество точек.

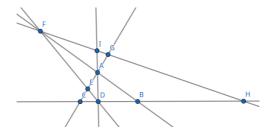


Рис. 4: К задаче 2.4

 $\it Omsem$: Три варианта: 1) всё, кроме $\it F$ и $\it I,$ 2) всё, кроме $\it B$ и $\it D,$ 3) всё, кроме $\it A$ и $\it E.$ Засчитывать любой из них

Задача 3.1. В треугольнике ABC угол B равен 134° , а высота, опущенная из вершины A, в два раза меньше биссектрисы угла A. Найдите угол C. Ответ выразите в градусах.

Ответ: 14°.

Pешение. Проведём в треугольнике высоту AH и биссектрису AL.

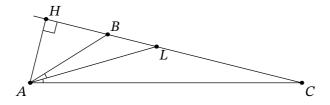


Рис. 5: К решению задачи 3.1

Поскольку в прямоугольном треугольнике AHL выполнено равенство AL = 2AH, то $\angle ALH = 30^\circ$. В треугольнике ABL угол B равен 134° , а $\angle ALB = 30^\circ$, поэтому $\angle CAL = \angle LAB = 180^\circ - 134^\circ - 30^\circ = 16^\circ$. Угол CAB равен удвоенному углу CAL, т.е. 32° . Таким образом, по сумме углов треугольника ABC угол C равен $180^\circ - 134^\circ - 32^\circ = 14^\circ$.

Критерии

Точное совпадение ответа – 7 баллов.

Задача 3.2. В треугольнике ABC угол B равен 146° , а высота, опущенная из вершины A, в два раза меньше биссектрисы угла A. Найдите угол C. Ответ выразите в градусах.

Ответ: 26°.

Задача 3.3. В треугольнике ABC угол B равен 142° , а высота, опущенная из вершины A, в два раза меньше биссектрисы угла A. Найдите угол C. Ответ выразите в градусах.

Ответ: 22°.

Задача 4.1. Таблицу 5×5 разбили на 7 связных частей по линиям сетки. В каждой части в одной из клеток написали количество клеток в этой части. Отметьте клетки части, которая содержит центральную клетку.

2	5		
		6	3
5	2		2

Рис. 6: К задаче 4.1

Решение. Пронумеруем клетки слева направо, сверху вниз.

Заметим, что часть, содержащая 2 в клетке номер 25 может содержать ещё только клетку номер 24. Теперь часть, содержащая 2 в клетке номер 23 может содержать только клетку номер 18.

Далее, с 3 в клетке номер 20 должны быть клетки 15 и 10, иначе для 6 в клетке 19 не будет доступных соседних клеток. Тогда с 6 в клетке 19 должны быть клетки 14, 9, 4, 5, 3, чтобы оставить 5 в центральной клетке незанятого соседа (и занять угловую клетку 5). Теперь понятно, что из-за связности частей в одной части с 5 в центральной клетке должны быть ещё клетки 8, 7, 2 и 1.

Критерии

Отмечено верное множество, быть может без центральной клетки – 7 баллов.

Отмечена одна клетка, не находящаяся в верном множестве – 3 балла.

Задача 4.2. Таблицу 5×5 разбили на 7 связных частей по линиям сетки. В каждой части в одной из клеток написали количество клеток в этой части. Отметьте клетки части, которая содержит центральную клетку.

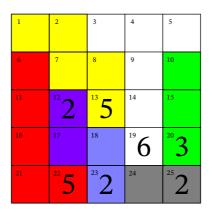


Рис. 7: К решению задачи 4.1

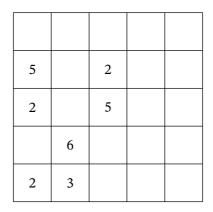


Рис. 8: К задаче 4.2

Ответ: Путь от центральной клетки: если занумеровать от 1 до 25 слева-направо, сверхувниз, то 5, 9, 10, 13, 14

Задача 4.3. Таблицу 5×5 разбили на 7 связных частей по линиям сетки. В каждой части в одной из клеток написали количество клеток в этой части. Отметьте клетки части, которая содержит центральную клетку.

Ответ: Путь от центральной клетки: если занумеровать от 1 до 25 слева-направо, сверхувниз, то 13, 18, 19, 24, 25

Задача 4.4. Таблицу 5×5 разбили на 7 связных частей по линиям сетки. В каждой части в одной из клеток написали количество клеток в этой части. Отметьте клетки части, которая содержит центральную клетку.

2		2	5	
3	6			
		5	2	

Рис. 9: К задаче 4.3

		3	2
		6	
	5		2
	2		5

Рис. 10: К задаче 4.4

Ответ: Путь от центральной клетки: если занумеровать от 1 до 25 слева-направо, сверхувниз, то 12, 13, 16, 17, 21

Задача 5.1. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что:

- Алю никто не видит;
- Беня не видит Веню, но видит Гешу;
- Веня видит Беню, но не видит Дусю;
- Геша не видит никого;
- Дуся стоит раньше Геши, но не видит его.

Определите порядок, в котором стоят дети.

Ответ: Дуся, Аля, Веня, Беня, Геша.

Решение. Поскольку Геша никого не видит, он должен стоять с краю, причём смотреть в направлении от всех людей. Так как Дуся стоит раньше Геши, то Геша не может быть первым, а значит, он последний. При этом Дуся не видит Гешу, а значит, она смотрит в начало колонны. Получаем, что Аля должна стоять между Дусей и Гешей, т.к. Алю никто не видит.

Поскольку Беня видит Гешу, он должен смотреть в конец колонны. Значит, Веня должен стоять раньше него, т.к. Беня не видит Веню. Далее, Веня видит Беню, а значит, он тоже смотрит в конец колонны. При этом он не видит Дусю, т.е. Дуся находится раньше него.

 \Box

Кроме того, Аля тоже должна находиться раньше Вени, т.к. Алю никто не видит.

Получаем, что порядок детей следующий: Дуся, Аля, Веня, Беня, Геша.

Критерии

Точное совпадение ответа – 7 баллов.

Указан ответ, в котором 4 ребёнка стоят в правильном порядке — 3 балла.

Задача 5.2. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что:

- Дусю никто не видит;
- Беня не видит Гешу, но видит Веню;
- Геша видит Беню, но не видит Алю;
- Веня не видит никого;
- Аля стоит раньше Вени, но не видит его.

Определите порядок, в котором стоят дети.

Ответ: Аля, Дуся, Геша, Беня, Веня

Задача 5.3. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что:

- Веню никто не видит;
- Беня не видит Алю, но видит Дусю;
- Аля видит Беню, но не видит Гешу;
- Дуся не видит никого;

• Геша стоит раньше Дуси, но не видит её.

Определите порядок, в котором стоят дети.

Ответ: Геша, Веня, Аля, Беня, Дуся

Задача 5.4. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что:

- Алю никто не видит;
- Геша не видит Дусю, но видит Беню;
- Дуся видит Гешу, но не видит Веню;
- Беня не видит никого;
- Веня стоит раньше Бени, но не видит его.

Определите порядок, в котором стоят дети.

Ответ: Веня, Аля, Дуся, Геша, Беня

Задача 6.1. Вася задумал три вещественных числа a, b, c. Оказалось, что три прямые, заданные уравнениями y = ax + 2, y = bx + 5 и y = cx + 8, пересекаются в одной точке. Найдите значение b, если известно, что a + c = 67.

Ответ: 33.5

Решение. Пусть точка пересечения всех трёх прямых имеет координаты (x, y). Тогда, с одной стороны, 2y = (ax + 2) + (cx + 8) = x(a + c) + 10, а с другой стороны, 2y = 2(bx + 5) = 2bx + 10. Получаем, что x(a + c) = 2xb. При этом $x \neq 0$, т.к. иначе выражения ax + 2, bx + 5 и cx + 8 не равны. Тогда можно поделить на x и получить 2b = a + c, откуда b = 33.5

Критерии

Точное совпадение ответа – 7 баллов.

Задача 6.2. Вася задумал три вещественных числа a, b, c. Оказалось, что три прямые, заданные уравнениями y = ax + 5, y = bx + 7 и y = cx + 9, пересекаются в одной точке. Найдите значение b, если известно, что a + c = 39.

Ответ: 19.5

Задача 6.3. Вася задумал три вещественных числа a, b, c. Оказалось, что три прямые, заданные уравнениями y = ax + 3, y = bx + 7 и y = cx + 11, пересекаются в одной точке. Найдите значение b, если известно, что a + c = 51.

Ответ: 25.5

Задача 6.4. Вася задумал три вещественных числа a, b, c. Оказалось, что три прямые, заданные уравнениями y = ax + 1, y = bx + 6 и y = cx + 11, пересекаются в одной точке. Найдите значение b, если известно, что a + c = 73.

Ответ: 36.5

Задача 7.1. Дан прямоугольный треугольник ABC с прямым углом A. На плоскости нашлась точка X, для которой AB = BX и AX = XC. Чему может быть равен угол BAX, если угол BXC равен 108° ?

Ответ выразите в градусах. Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.

Ответ: 36;84

Решение. Заметим, что поскольку AX = XC, то точка X лежит на серединном перпендикуляре к отрезку AC. А поскольку AB = BX, то X лежит на окружности с центром B и радиусом AB. Таким образом X лежит на пересечении этих окружности и прямой, значит есть два случая расположения точки X.

Случай 1

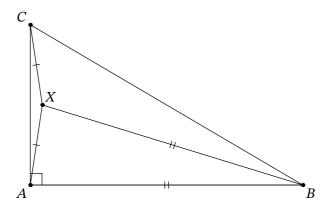


Рис. 11: К решению задачи 7.1, случай 1

Предположим, что точка X находится внутри треугольника ABC. Обозначим $\alpha = \angle ACX$. Тогда из-за того, что треугольник AXC равнобедренный, $\angle XAC = \alpha$. Значит, $\angle AXB = \angle BAX = 90^{\circ} - \alpha$.

$$\angle BXC = 360^{\circ} - \angle AXC - \angle AXB = 360^{\circ} - (180^{\circ} - 2\alpha) - (90^{\circ} - \alpha) = 3\alpha + 90^{\circ} = 108^{\circ}$$

Отсюда получаем, что $\alpha = (108^{\circ} - 90^{\circ})/3 = 6^{\circ}$, а $\angle BAX = 90^{\circ} - \alpha = 84^{\circ}$.

Случай 2

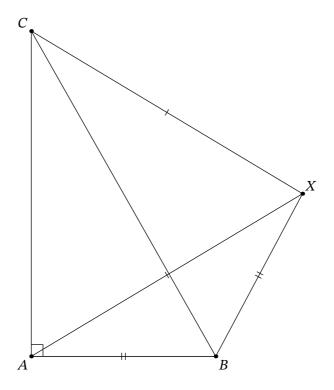


Рис. 12: К решению задачи 7.1, случай 2

Предположим, что точка X находится вне треугольника ABC. Обозначим $\alpha = \angle CAX$. Тогда из-за того, что треугольник AXC равнобедренный, $\angle XAC = \alpha$. Значит, $\angle AXB = \angle BAX = 90^{\circ} - \alpha$.

$$\angle BXC = \angle AXC + \angle AXB = (180^\circ - 2\alpha) + (90^\circ - \alpha) = 270^\circ - 3\alpha = 108^\circ$$

Отсюда получаем, что
$$\alpha = (270^{\circ} - 108^{\circ})/3 = 54^{\circ}$$
, а $\angle BAX = 90^{\circ} - \alpha = 36^{\circ}$.

Критерии

Указано оба верных ответа и не указано неверных – 7 баллов.

Указан ровно один верный ответ и не указано неверных – 3 балла.

Указано оба верных ответа и указан ровно один неверный – 3 балла

Задача 7.2. Дан прямоугольный треугольник ABC с прямым углом A. На плоскости нашлась точка X, для которой AB = BX и AX = XC. Чему может быть равен угол BAX, если угол BXC равен 123°?

Ответ выразите в градусах. Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.

Ответ: 41;79

Задача 7.3. Дан прямоугольный треугольник ABC с прямым углом A. На плоскости нашлась точка X, для которой AB = BX и AX = XC. Чему может быть равен угол BAX, если угол BXC равен 138°?

Ответ выразите в градусах. Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.

Ответ: 46;74

Задача 7.4. Дан прямоугольный треугольник *ABC* с прямым углом *A*. На плоскости нашлась точка X, для которой AB = BX и AX = XC. Чему может быть равен угол BAX, если угол BXC равен 117° ?

Ответ выразите в градусах. Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.

Ответ: 39;81

Задача 8.1. В турнире онлайн-игры участвуют 64 персонажа. В каждом из 6 раундов персонажи разбиваются на пары, сражаются между собой, победитель проходит дальше.

Изначально уровни персонажей были равны 1, 2, ..., 64. В битве всегда побеждает персонаж с большим уровнем, а если уровни одинаковы, может победить любой. После каждого тура уровень персонажа может измениться на 1 в ту или иную сторону, а может остаться прежним.

Персонаж с каким наименьшим стартовым уровнем мог победить в турнире?

Ответ: 54

Решение. Заметим, что после каждого раунда наибольший уровень персонажей уменьшается не более чем на 1, т.к. один из персонажей наибольшего уровня победит и пройдёт дальше, и его уровень уменьшится не более чем на 1.

Тогда после 5 раундов останется персонаж хотя бы 59 уровня. Значит, победитель турнира после 5 туров должен иметь хотя бы 59 уровень. Это может сделать только персонаж, уровень которого в начале не менее 54.

Приведём пример, как такое могло получиться. Разобьём турнирную сетку на 2 части, в каждой из которых будет по 32 персонажа. Пусть в левую половину попадут персонажи со стартовыми уровнями 64, 63, ..., 55, 53, ..., 32, а в левую — оставшиеся. При этом в левой половине после каждого раунда уровень всех персонажей уменьшается на 1, а в правой — увеличивается. Это значит, что в левой половине победит персонаж со стартовым уровнем 64, и к финалу его уровень станет равен 59. А в правой половине победит персонаж со стартовым уровнем 54, и к финалу его уровень тоже станет равным 59. Поэтому он сможет выиграть в турнире.

Критерии

Точное совпадение ответа – 7 баллов.

Задача 8.2. В турнире онлайн-игры участвуют 128 персонажей. В каждом из 7 раундов персонажи разбиваются на пары, сражаются между собой, победитель проходит дальше.

Изначально уровни персонажей были равны 1, 2, ..., 128. В битве всегда побеждает персонаж с большим уровнем, а если уровни одинаковы, может победить любой. После каждого тура уровень персонажа может измениться на 1 в ту или иную сторону, а может остаться прежним.

Персонаж с каким наименьшим стартовым уровнем мог победить в турнире?

Ответ: 116

Задача 8.3. В турнире онлайн-игры участвуют 256 персонажей. В каждом из 8 раундов персонажи разбиваются на пары, сражаются между собой, победитель проходит дальше.

Изначально уровни персонажей были равны 1, 2, ..., 256. В битве всегда побеждает персонаж с большим уровнем, а если уровни одинаковы, может победить любой. После каждого тура уровень персонажа может измениться на 1 в ту или иную сторону, а может остаться прежним.

Персонаж с каким наименьшим стартовым уровнем мог победить в турнире?

Ответ: 242

Задача 8.4. В турнире онлайн-игры участвуют 512 персонажей. В каждом из 9 раундов персонажи разбиваются на пары, сражаются между собой, победитель проходит дальше.

Изначально уровни персонажей были равны 1, 2, ..., 512. В битве всегда побеждает персонаж с большим уровнем, а если уровни одинаковы, может победить любой. После каждого тура уровень персонажа может измениться на 1 в ту или иную сторону, а может остаться прежним.

Персонаж с каким наименьшим стартовым уровнем мог победить в турнире?

Ответ: 496