Максимальное количество баллов за олимпиаду — 112

Задание 1. Пусть $k \ge 2$ — целое число. Будем говорить, что две точки на числовой прямой дружат, если разность их координат делится на k. Непустое множество точек назовём кластером, если любые две точки в этом множестве дружат, и к нему нельзя добавить ни одной точки, чтобы это свойство сохранилось.

При каких целых $k \geq 2$ точки числовой прямой с координатами

можно разбить на два кластера?

Задание 2. Петя загадал два натуральных числа a и b. Вася пытается их отгадать, задавая вопросы. Вопрос Васи состоит в том, что он называет два натуральных числа x и y. В ответ на вопрос Петя сообщает два числа z < t, одно из которых равно ax + by (какое именно — не говорит).

Вася задал два вопроса: для x=4 и y=1 Петя ответил 14 и 15; для x=1 и y=4 Петя ответил 9 и 11. Какие числа загадал Петя?

Задание 3. В заповеднике планируют ввести автоматический мониторинг редких *розовых лемуров*. Для тестирования системы была выбрана группа из 100 животных, в которой 10% составляют розовые лемуры (класс 1), а оставшиеся 90% — обычные лемуры (класс 0). Будем называть эту группу *тестовой выборкой*.

Модели ИИ для каждой особи из тестовой выборки сделали предсказание, к какому классу (0 или 1) относится данный лемур. Для оценки качества распознования введём следующие стандартные обозначения:

- TP. Предсказан класс (1), в действительности класс (1).
- FP. Предсказан класс (1), в действительности класс (0).
- TN. Предсказан класс (0), в действительности класс (0).
- FN. Предсказан класс (0), в действительности класс (1).

Всего в тестовой выборке P=TP+FN объектов (лемуров) класса 1 и N=TN+FP объектов класса 0.

Четыре модели ИИ (A, B, C и D) распознавали лемуров из тестовой выборки. Модель А всех лемуров отнесла к классу 0, модель В всех лемуров отнесла к классу 1. Данные о работе моделей С и D приведены в таблице ниже.

 Модель
 TP
 FP
 TN
 FN

 C
 7
 8
 82
 3

 D
 8
 14
 76
 2

Для моделей A, B, C, D вычислим следующие пять $метрик M_1, M_2, M_3, M_4, M_5$ (если для некоторой модели возникает деление на ноль, соответствующая метрика для неё не вычисляется).

$$M_1 = \frac{TP + TN}{P + N}$$
 (общая точность), $M_2 = \frac{TP}{TP + FN}$ (верные на классе 1), $M_3 = \frac{TN}{TN + FP}$ (верные на классе 0), $M_4 = \frac{1}{2} \left(M_2 + M_3 \right)$ (сбалансированная точность), $M_5 = \frac{TP}{TP + FP}$ (точность на предсказаниях 1).

Для каждой из метрик M_1, M_2, \dots, M_5 определите, для какой из моделей достигается её максимальное значение.

Задание 4. Вася тестировал модель с действительными параметрами x и y. Он выяснил, что функция потерь задаётся формулой

$$\mathcal{L}(x,y) = x^4 + y^2 + 2x^2y + 4y + 6x^2 - 4x + 14.$$

Помогите Васе определить значения параметров (x^*, y^*) , для которых значение функции потерь наименьшее. В ответ укажите x^* , y^* и значение $\mathcal{L}(x^*, y^*)$.

Задание 5. Есть набор примеров для обучения: всего N примеров, из них ровно два — положительные, остальные — отрицательные. Случайно выбирают группу из 4 примеров. Известно, что вероятность того, что в группе окажутся оба положительных, в 2 раза больше вероятности того, что не окажется ни одного положительного. Найдите все возможные значения N.

Задание 6.

Отчёт об обучении нейросетистандартный вводстандартный вывод1 секунда256 мегабайт

Обучение нейронных сетей обычно делится на эпохи. За одну эпоху, в рамках обучения, модель один раз проходится по обучающему датасету.

Дима долгое время работал над новой разработкой. В процессе её обучения было целых n эпох. После каждой эпохи, Дима записывал текущее время в формате HH:MM (например, 13:03). Теперь Диме интересно, какое минимальное количество времени могло уйти на обучение модели.

Дима сейчас очень загружен рабочими задачами, поэтому обратился за помощью к Вам. Посчитайте минимальное количество времени, которое могло уйти на обучение модели.

Формат входных данных

В первой строке входных данных даётся одно целое число $n (2 \le n \le 10^4)$.

В следующих n строках задаются моменты времени, когда заканчивалась очередная эпоха в формате HH:MM (24-х часовой формат)

Формат выходных данных

Выведите одно целое число: минимальное количество минут, которое могло уйти на обучение модели. Округлите ответ вниз до ближайшего целого количества минут.

Замечание

В первом тестовом примере, точно прошло 10 полных часов (14 - 24). А также, было 56 минут, начиная с 13 : 03 и до 14 : 00 (не 57, так как 13 : 03 могло быть 13 : 03 : 59). И еще 15 минут прошло с 00 : 00 до 00 : 15. Итого, $10 \cdot 60 + 56 + 15 = 671$

Задание 7.

Специальное дерево принятия решений

Имя входного файла: стандартный ввод

Имя выходного файла: стандартный вывод

Ограничения по времени: 1 секунда

Ограничения по памяти: 256 мегабайт

Дано полное бинарное дерево принятия решений глубины n. От корня до листа делается ровно n шагов. На каждом шаге принимается одно из двух решений: пойти влево или вправо. Изначально оба варианта равновероятны: у каждого ребра вероятность 1/2.

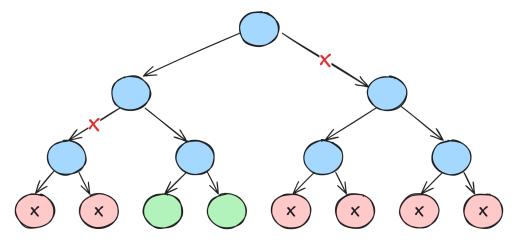
Кто-то изменил устройство дерева и поменял две вероятности на ребрах на 0:

- первое ребро это a-е ребро на пути «всегда влево» (ребро между уровнями a-1 и a, если от корня на каждом шаге выбирать влево);
- второе ребро это b-е ребро на пути «всегда вправо» (ребро между уровнями b-1 и b, если от корня на каждом шаге выбирать вправо).

Все остальные ребра по-прежнему имеют вероятность 1/2 (кроме тех ребер, которые лишились соседнего ребра, у них вероятность теперь равна единице).

Исходами в этом дереве называются листы (вершины на самом нижнем уровне). Вероятность каждого исхода, это произведение вероятностей на пути до соответствующего листа.

Требуется определить, сколько различных исходов (листов дерева) всё ещё имеют **ненулевую** вероятность.


Формат входных данных

В единственной строке заданы три целых числа $n, a, b \ (1 \le n \le 60, 1 \le a, b \le n)$.

Формат выходных данных

Выведите одно целое число — количество листьев, которые остаются достижимыми (то есть соответствуют путям ненулевой вероятности).

Замечание

В первом тестовом примере, доступными останется лишь 2 исхода.

Задание 8. С помощью трёх моделей машинного обучения a_1, a_2, a_3 мы хотим различать фотографии собачек (класс 0) и кошечек (класс 1). Чтобы оценить качество моделей, мы запустили их на наборе изображений, для которых известен правильный ответ.

В таблице (формат XLSX формат CSV) в каждой строке записаны четыре числа: в столбце y указан правильный класс, а в столбцах a_1, a_2, a_3 — ответы трёх моделей. Все числа равны 0 или 1.

Доверие к моделям различается; веса заданы так:

$$w_1 = 2, \qquad w_2 = 1, \qquad w_3 = 3.$$

Для каждой строки вычисляется взвешенная сумма

$$S = w_1 \cdot a_1 + w_2 \cdot a_2 + w_3 \cdot a_3.$$

Итоговый ответ равен $\hat{y} = 1$, если $S \ge 3$, и $\hat{y} = 0$ иначе.

Найдите количество строк, в которых итоговый ответ \hat{y} совпадает с правильным ответом y. В ответ укажите только это число.