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Региональный этап, 2025–2026 учебный год

Введение

Порядок проведения, методика и система оценивания (проверки) регионального
этапа Всероссийской олимпиады школьников по математике 2025–2026 учебного

года.

Региональный этап Всероссийской олимпиады школьников по математике 2025–2026 учебного
года проводится по заданиям, подготовленным Центральной предметно-методической комиссией,
в единые для всех субъектов РФ сроки: 2 февраля 2026 г. (I тур) и 3 февраля 2026 г. (II тур).
Региональный этап проводится по отдельным заданиям для учащихся 9, 10 и 11 классов.

Задания для каждого класса включают 10 задач — по 5 задач в каждом из двух дней (туров)
Олимпиады (задачи 1–5 — I тур, задачи 6–10 — II тур). Продолжительность каждого тура для
каждого класса составляет 3 часа 55 минут.

В силу того, что во всех субъектах Российской Федерации региональный этап проводится
по одним и тем же заданиям, подготовленным Центральной предметно-методической комиссией,
в целях предотвращения преждевременного доступа к текстам заданий со стороны участников
Олимпиады, а также их учителей и наставников, время начала и окончания туров в установлен-
ные даты в каждом субъекте РФ должно определяться в соответствии с «Временны́ми регла-
ментами проведения туров регионального этапа Всероссийской олимпиады школьни-
ков в субъектах Российской Федерации в 2025–2026 учебном году» для часовых поясов.

Разбор задач в субъектах Российской Федерации, где тур оканчивается в 16.00 и 17.00 по
местному времени, проводится не раньше, чем на следующий день после проведения второго
тура Олимпиады.

Решение каждой задачи оценивается целым числом баллов от 0 до 7. Максимальное количе-
ство баллов, которое может получить участник, равно 70 (35 — I тур, 35 — II тур).

Задания математических олимпиад являются творческими, допускают несколько различных
вариантов решений. Кроме того, необходимо оценивать частичные продвижения в задачах (на-
пример, разбор важного случая, доказательство вспомогательного утверждения, нахождение при-
мера и т. п.). Наконец, возможны логические и арифметические ошибки в решениях. Окончатель-
ные баллы по задаче должны учитывать всё вышеперечисленное.

Проверка работ осуществляется в соответствии со следующими правилами:
а) любое правильное решение оценивается в 7 баллов. Недопустимо снятие баллов за то, что

решение слишком длинное, или за то, что решение школьника отличается от приведённого в
методических разработках;

б) недопустимо снятие баллов в работе за неаккуратность записи решений;
в) баллы не выставляются «за старание Участника», в том числе за запись в работе большого

по объёму текста, не содержащего продвижений в решении задачи;
г) черновики не проверяются.
В связи с необходимостью качественной оценки работ участников, на их проверку выделяется

до 7 дней.
Для единообразия оценки работ участников олимпиады из разных регионов и с целью исклю-

чения при этом ошибок, Центральная предметно-методическая комиссия имеет право перепро-
верки работ участников регионального этапа.

В случае отсутствия специальных критериев по задаче, её решение оценивается по приведён-
ной ниже таблице (отметим, что для исключения различий в оценке близких продвижений по
задаче в работах разных участников, таблица упрощена по сравнению с приведённой в Требова-
ниях по проведению регионального этапа).
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Баллы Правильность (ошибочность) решения
7 Полное верное решение.

5–7 Верное решение. Имеются недочёты, в целом не
влияющие на решение.

1–4 Задача не решена, но в работе имеются существен-
ные продвижения.

0 Аналитическое решение (координатным, вектор-
ным, тригонометрическим методом) геометриче-
ской задачи, не доведённое до конца.

0 Рассмотрение частного случая, не дающее продви-
жений в решении в общем случае.

0 Верное решение отсутствует, существенных продви-
жений нет.

Ниже приведены ответы и решения к задачам олимпиады. В комментариях к задачам указаны
критерии оценивания (в баллах) некоторых предполагаемых ошибок и частичных продвижений.
Заметим, что работа участника, помимо приведённых, может включать другие содержательные
продвижения и ошибки, которые должны быть оценены дополнительно.

Желаем успешной работы!
Авторы и составители сборника
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9 класс
9.6. Тренер дал начинающим шахматистам задание: каждый должен подойти к шахматной

доске 8 × 8, поставить шахматного короля на одну из угловых клеток и сделать им 21
ход так, чтобы король побывал в каких-то двух других угловых клетках и вернулся в
исходную клетку. После этого короля убирают, и к доске подходит следующий ребёнок.
Четыре ребёнка по очереди выполнили задание. Обязательно ли после этого найдутся
такие две клетки A и B, что хотя бы два ребёнка сделали ход королём с клетки A на
клетку B?

Ответ: Не обязательно.
Решение. Пример четырёх обходов, совершённых детьми, при которых таких двух

клеток не найдётся, приведён на рисунке ниже.

Замечание. Существуют и немного другие примеры. Укажем общие свойства всех воз-
можных примеров.

В каждую угловую клетку король должен (у разных детей) входить с разных клеток, и
уходить с неё на разные. Поскольку у угловых клеток всего три соседних, каждая угловая
клетка должна быть посещена ровно трижды. Далее, между любыми двумя посещениями
угловых клеток должно пройти ровно 7 ходов. У каждого ребёнка король должен подряд
посетить две угловых клетки, расположенных «по диагонали» друг от друга, и между эти-
ми клетками он должен совершить 7 диагональных ходов. Значит, обе диагонали доски
должны быть пройдены по два раза в разных направлениях. Отсюда уже можно вывести,
что порядок посещения угловых клеток у четырёх детей должен быть таким же, как в
примере сверху, либо же обратным (у всех детей). Наконец, на пути между двумя соседни-
ми угловыми клетками (скажем, находящимися в одной строке) первый и последний ход
должны быть горизонтальными, а вот между ними путь может выглядеть по-разному.

(⋆) Любой верный пример четырёх обходов доски, удовлетворяющих требованиям7 баллов
(0) Пример, в котором не указаны направления обходов (но их можно указать так, чтобы

получился верный пример!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 балла
(1) То же, но указано направление лишь одного обхода из четырёх . . . . . . . . . . . . . . 5 баллов
(2) То же, но указано направление хотя бы двух обходов . . . . . . . . . . . . . . . . . . . . . . . . .7 баллов

9.7. Дано нечётное простое число p. Найдите все пары натуральных чисел a и b таких, что
a

p
+

p

b
= 2.

Ответ: Пары a = b = p и a = 2p− 1, b = p2.
Решение. Умножив равенство на pb, получаем ab + p2 = 2pb, откуда p2 = (2p − a)b.

Значит, b — натуральный делитель числа p2. У p2 всего 3 натуральных делителя 1, p и
p2. Если b = 1, то 2p − a = p2, значит, a = 2p − p2 = p(2 − p) < 0, то есть этот случай
невозможен. Если b = p, то 2p − a = p, откуда a = p. Если b = p2, то 2p − a = 1, откуда
a = 2p− 1. Обе найденные пары (p, p) и (2p− 1, p2), как нетрудно проверить, подходят.

Замечание. Обратим внимание, что все преобразования в решении равносильны (если
числа a, b и p натуральны), поэтому на самом деле проверка того, что полученные ответы
подходят, не требуется.
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(О+) Только полный ответ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(О−) Неполный ответ (в котором хотя бы один случай упущен) . . . . . . . . . . . . . не оценивается

(O) Если в работе ответ неверен . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не более 5 баллов за задачу
(A) Получено равенство p2 = (2p − a)b (именно такое, с разложением на множители!) или

хотя бы одна из делимостей p2
... b и p2

... 2p− a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
(B−) Во в целом верном решении при переборе делителей числа p2 ровно один из них (1, p

или p2) упущен или разобран неверно . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . снимаются 2 балла
(C) В решении с существенно неравносильными переходами отсутствует проверка того, что

ответы подходят . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . снимается 1 балл
9.8. Остроугольный треугольник ABC вписан в окружность с центром в точке O. Прямая

AO пересекает отрезок BC в точке D. Точка E выбрана на отрезке BC так, что D —
середина отрезка CE. Основание T перпендикуляра, опущенного из E на CO, лежит в
треугольнике ABD. Прямая BT пересекает окружность, описанную около треугольника
ABD, в точке K. Докажите, что прямые AK и CO параллельны.

Решение. Так как треугольник CET прямоугольник, середина гипотенузы D равно-
удалена от вершин T и C. Тогда из равнобедренных треугольников DTC и OBC име-
ем ∠OTD = ∠OCD = ∠OBD, поэтому четырёхугольник OTBD — вписанный. Значит,
∠ADB = ∠ODB = ∠OTK. С другой стороны, поскольку четырёхугольник AKDB впи-
сан, имеем ∠ADB = ∠AKB = ∠AKT . Итак, ∠OTK = ∠AKT , откуда и следует, что
прямые OT (то есть CO) и AK параллельны.

A

B CDE

T

K

O

(1) Доказано, что точки O, T , D и B лежат на одной окружности . . . . . . . . . . . . . . . . 3 балла
(2) Утверждение задачи сведено к факту, что точки O, T , D и B лежат на одной окружности

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

9.9. Числа a, b и c больше единицы и удовлетворяют равенству
(
a− 1

b

)(
b− 1

c

)(
c− 1

a

)
= 1.

Докажите, что (
a− 1

a

)2
+

(
b− 1

b

)2
+

(
c− 1

c

)2
⩾

b

a
+

c

b
+

a

c
.

Решение. Домножив первую скобку в равенстве из условия на b
a , вторую на c

b , а третью
на a

c , получим равенство(
b− 1

a

)(
c− 1

b

)(
a− 1

c

)
=

b

a
· c
b
· a
c
= 1. (∗)

По неравенству о средних для трех чисел из (∗) получаем(
b− 1

a

)2
+

(
c− 1

b

)2
+

(
a− 1

c

)2
⩾ 3

((
b− 1

a

)(
c− 1

b

)(
a− 1

c

))2/3
= 3.

Раскрыв скобки в левой части и перенеся все попарные произведения в правую часть,
получаем, что
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a2 + b2 + c2 +
1

a2
+

1

b2
+

1

c2
⩾ 3 + 2

(
b

a
+

c

b
+

a

c

)
⩾ 6 +

(
b

a
+

c

b
+

a

c

)
,

где в последнем неравенстве мы снова применили неравенство о средних для трех чисел:
b
a + c

b +
a
c ⩾ 3 3

√
b
a · cb ·

a
c = 3.

Осталось заметить, что то же самое получится, если раскрыть скобки в требуемом
неравенстве и перенести 6 в правую часть.

9.10. В большой компании у каждого человека ровно 100 знакомых в этой же компании (если A
знаком с B, то и B знаком с A). Оказалось, что у любого человека среди его 100 знакомых
есть хотя бы одна пара незнакомых друг с другом людей. При каком наибольшем k можно
утверждать, что в компании найдётся такой человек, что среди его 100 знакомых найдутся
хотя бы k различных пар людей, в каждой из которых люди не знакомы друг с другом?
(Один человек может входить в несколько таких пар.)

Ответ: k = 50.
Решение 1. Введём граф, вершины которого будут соответствовать людям; две вер-

шины соединены синим ребром, если соответствующие работники знакомы, и красным
иначе. Тогда из каждой вершины v выходят ровно 100 синих рёбер — назовём множество
их вторых концов окрестностью N(v) вершины v, и в каждом множестве N(v) есть две
вершины, соединённые красным ребром. Требуется же выяснить, при каком наибольшем
k обязательно найдётся вершина v такая, что на вершинах множества N(v) есть хотя бы
k красных рёбер.

Пример. Покажем сначала, что при k ⩾ 51 требуемая вершина найдётся не всегда.
Рассмотрим 102 вершины, разобьём их на пары и вершины каждой пары соединим крас-
ным ребром. Все остальные пары вершин соединим синими рёбрами. Тогда окрестность
каждой вершины состоит из 50 пар, и на них есть ровно 50 красных рёбер. Таким образом,
условие выполнено, но ни в одной окрестности нет 51 красного ребра.

Оценка. Осталось показать, что при k = 50 требуемая окрестность всегда найдётся.
Предположим противное. Рассмотрим произвольную вершину v. В множестве N(v) най-
дутся две вершины u1 и u2, соединённые красным ребром. Тогда из u1 выходит синее реб-
ро в какую-то вершину, не лежащую в N(v)∪{v} — обозначим её через w. Итак, вершины
v и w соединены красным ребром, но множества N(v) и N(w) пересекаются — хотя бы по
u1.

Положим P = N(v) ∩ N(w); пусть t — количество вершин в P , тогда 1 ⩽ t ⩽ 100.
Обозначим через Q множество всех вершин в N(v), не лежащих в P , а через R множество
всех вершин в N(w), не лежащих в P ; тогда в Q и R по 100− t вершин. Пусть S = N(v)∪
∪N(w) = P ∪Q∪R; тогда число вершин в S равно t+2(200− t) = 200− t. Пусть есть всего
a красных рёбер, соединяющих вершины P друг с другом, b красных рёбер, соединяющих
P с Q, и c красных рёбер, соединяющих P с R.

Из каждой вершины p множества P идут синие рёбра в v, в w, и ещё максимум 98
синих рёбер в S; значит из p идут не менее (200 − t) − 98 − 1 = 101 − t красных рёбер
в S. Просуммировав эти количества по всем t вершинам множества P , мы учтём каждое
из a красных рёбер, соединяющих вершины P друг с другом, дважды, а каждое из b + c
красных рёбер, соединяющих P с вершинами из Q ∪ R, по разу, то есть получим оценку
2a+ b+ c ⩾ t(101− t). С другой стороны, на множестве N(v) есть хотя бы a+ b красных
рёбер, а на множестве N(w)— хотя бы a+c красных рёбер; по нашему предположению, оба
этих количества не превосходят 49, поэтому 2·49 ⩾ (a+b)+(a+c) = 2a+b+c ⩾ t(101−t). Но
это неравенство неверно, поскольку t(101−t) = 1

4(101
2−(2t−101)2) ⩾ 1

4(101
2−992) = 100.

Решение 2. Приведём другое доказательство того, что при k = 50 требуемая окрест-
ность N(v) найдётся. Опять же предположим противное. Воспользуемся следующими дву-
мя нехитрыми соображениями.

Лемма 1. Пусть у вершины u ∈ N(v) есть ровно t вершин в N(v), с которыми она
соединена красным ребром. Тогда u соединена синими рёбрами ровно с t вершинами,
отличными от v и не лежащими в N(v).
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Доказательство. Вершина u соединена синими рёбрами с v и ровно с 99−t вершинами
в N(v). Значит, количество остальных вершин, с которыми она соединена синими рёбрами,
равно 100− 1− (99− t) = t. □

Лемма 2. Пусть у вершины u ∈ N(v) есть t вершин в N(v), с которыми она соединена
красными рёбрами. Тогда в N(v) есть как минимум t + 1 вершин, каждая из которых
соединена со всеми остальными 99 вершинами в N(v) сними рёбрами.

Доказательство. Если это не так, то из вершины u выходит t красных рёбер в другие
вершины N(v), и ещё минимум из 99 − t других вершин в N(v) выходит хотя бы по
одному красному ребру в вершины N(v). Значит, общее количество красных рёбер между
вершинами множества N(v) не меньше (t + (99 − t))/2 > 49, то есть их хотя бы 50. Это
противоречит нашему предположению. □

Перейдём к решению. Рассмотрим произвольную вершину v. Выберем вершину w ∈
∈ N(v), из которой выходит наибольшее количество t красных рёбер в другие вершины
из N(v) (тогда t > 0). Обозначим через T множество вершин, соединённых с w синим
ребром, а с v — красным; по лемме 1, в T ровно t вершин.

В множестве N(w) содержится вершина v; при этом она соединёна c t вершинами из
N(w) красными рёбрами — а именно, с вершинами из T . По лемме 2, в N(w) есть t + 1
вершин, каждая из которых соединена синими рёбрами со всеми вершинами из N(w)
(отличными от неё); обозначим через S множество этих вершин. В частности, v не лежит
в S (ибо из v выходят красные рёбра в T ), и все вершины из S соединены синими рёбрами
с v, то есть S содержится в N(w) ∩N(v).

Рассмотрим теперь какую-нибудь вершину u из N(v), соединённую с w красным реб-
ром. Любая вершина s ∈ S соединена синими рёбрами со всеми другими вершинами из
N(w) и с самой w — здесь уже перечислены все 100 синих рёбер, выходящих из неё. Значит,
s соединена с u красным ребром. Но тогда из u выходит t + 2 красных ребра в вершины
из N(v)— а именно, в w и во все вершины из S. Это противоречит выбору t; значит, наше
исходное предположение неверно, что мы и хотели доказать.

Замечание. Существуют и другие способы доказать оценку.
Например, опять же в предположении противного, можно выбрать наибольшее t, при

котором найдутся вершины v и w ∈ N(v) такие, что w соединена с t вершинами из N(v)
красными рёбрами (тогда t ≤ 49). Опять же обозначим через T множество вершин из
N(w), не лежащих в N(v) ∪ {v}; тогда |T | = t. Пусть Q = N(w) \ T ; тогда из леммы 1
можно вывести, что из вершин множества Q выходит суммарно не более 98 − t синих
рёбер в вершины из T . Значит, количество красных рёбер между Q и T не меньше, чем
∆ = t(100− t)− (98− t); нетрудно показать, что ∆ > t2, и потому в T найдётся вершина,
соединённая более чем с t вершинами из Q красными рёбрами. Это противоречит выбору
t, ибо все эти вершины лежат в N(w).

(П) Показано только, что при k ⩾ ‘51 требуемой вершины может не найтись . . . . . . . 1 балл
(О) Доказано, что при k = 50 требуемая вершина найдётся всегда . . . . . . . . . . . . . . . 6 баллов

Частичные продвижения в оценке (суммирующиеся с баллами за пример) оценива-
ются так.

(Л1) Сформулирована и доказана лемма 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(Л1′) Если лемма 1 используется без доказательства . . . . . . . . . . . . . . . . . . . баллы не снимаются
(Л2) Сформулирована и доказана лемма 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(И1) Выбраны две вершины v и w, соединённые красным ребром, но имеющие общего соседа

(по синим рёбрам), и замечено, что из такого общего соседа идёт красное ребро в вершину
из N(v) ∪N(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл

(И2) В N(v) выбрана вершина w, из которой идёт наибольшее число красных рёбер в N(v)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл

Баллы за (И1) и (И2) не складываются друг с другом, но складываются с баллом за
(Л2).
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10 класс
10.6. На окружности отмечено 16 точек, которые делят окружность на 16 равных дуг. Петя

расставил в этих точках (в некотором порядке) 16 последовательных натуральных чисел.
Далее для каждой пары диаметрально противоположных точек Петя вычислил сумму
чисел в этих точках. Могло ли оказаться, что полученные 8 сумм представляют собой
8 последовательных натуральных чисел?

Ответ: не могло.
Решение.
Предположим противное: для некоторого набора расставленных чисел n, n+1, . . . , n+15

наши суммы в парах равны s, s+1, . . . , s+7 (здесь n и s — некоторые натуральные числа).
Тогда сумма S всех чисел с одной стороны равна S = n+(n+1)+(n+2)+ . . .+(n+15) =
= 16n+15 ·8, а с другой стороны, она равна S = s+(s+1)+(s+2)+ . . .+(s+7) = 8s+7 ·4.
Из первого равенства видим, что S делится на 8, а из второго — что не делится на 8.
Противоречие.

(A) Общая сумма приравнена к сумме чисел в парах . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла
10.7. На координатной плоскости проведена прямая ax+by+c = 0, где a, b, c— некоторые поло-

жительные числа. Известно, что эта прямая касается окружности x2+ y2 = 1. Докажите,
что если взять три отрезка с длинами a, b, c, то из них можно сложить прямоугольный
треугольник.

Решение 1. Достаточно доказать, что c2 = a2 + b2.
Так как прямая и окружность имеют единственную общую точку, система уравнений

ax+ by + c = 0, x2 + y2 = 1 имеет единственное решение.
Выразим by = −ax− c и подставим в уравнение окружности b2(x2+y2) = b2. Получим

b2x2+(ax+ c)2− b2 = 0 ⇐⇒ (a2+ b2)x2+2ac x+(c2− b2) = 0. Это квадратное уравнение
должно иметь единственный корень, значит дискриминант должен обращаться в 0.

Имеем D/4 = (ac)2−(a2+b2)(c2−b2) = 0 ⇐⇒ b2(a2+b2−c2) = 0, откуда a2+b2−c2 = 0,
что и требуется.

Решение 2. Прямая касается окружности x2 + y2 = 1, если расстояние от центра
(0; 0) до этой прямой равно 1. По формуле расстояния от точки до прямой получаем, что
1 = |a·0+b·0+c√

a2+b2
|, откуда

√
a2 + b2 = |c| или a2 + b2 = c2.

Замечание. Есть и другие подходы к решению. Например, подставляя x = 0 и y = 0
в уравнение прямой, понимаем, что наша прямая пересекает оси координат в точках
A(− c

a , 0) и B(0,−c
b). Значит, мы знаем катеты прямоугольного треугольника OAB, а кро-

ме того, из касания следует, что высота OH этого треугольника равна 1. Составив урав-
нение, связывающее величины OA, OB, OH (скажем, выразив площадь двумя способами:
OA ·OB =

√
OA2 +OB2 ·OH), получаем нужное нам соотношение a2 + b2 = c2.

(A) Верно записано условие касания (через дискриминант квадратного уравнения или через
формулу расстояния от точки до прямой и т.д.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 балла

(B) Замечено, что для решения нужно доказать равенство c2 = a2 + b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не добавляются
10.8. В конференции участвуют 2026 математиков, у каждого из которых есть некоторое ко-

личество друзей (возможно, ни одного) среди остальных. Дружба взаимна. Известно, что
выполняется условие: если двое математиков дружат, то количества друзей у них отлича-
ются ровно на 1. Найдите наибольшее возможное количество пар друзей.

Ответ: 1013 · 1012.
Решение. Положим k = 1013. Поставим в соответствие каждому математику вершину,

и соединим ребром вершины, соответствующие друзьям. Мы получили граф, обладающий
таким свойством: степени любых двух соседних (т.е. соединенных ребром) вершин отли-
чаются ровно на 1. Пусть V и E — множества вершин и рёбер этого графа, тогда |V | = 2k.
Нам нужно найти максимальное |E| (т. е. максимальное количество рёбер в таком графе).
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Пример. Пусть одна вершина не соединена ни с какой другой. Остальные вершины
разобьём на множества X и Y размера k и k − 1 соответственно, и соединим ребром
каждую вершину из X с каждой вершиной из Y . Тогда условие выполняется, поскольку
степень каждой вершины из X равна k− 1, а степень каждой вершины из Y равна k. При
этом всего проведено k(k − 1) рёбер.

Оценка. Докажем, что |E| ⩽ k(k−1). Обозначим через Xi множество вершин степени i.
По условию, ребро может соединять только две вершины из Xi−1 и Xi (при некотором i).
Пусть m — максимальная степень вершины (т.е. |Xm| > 0 и |Xm+1| = |Xm+2| = . . . = 0).

1) Если m ⩽ k − 1, то степень каждой вершины в графе не больше k − 1, поэтому
2|E| ⩽ (k − 1) · |V | = (k − 1) · (2k), откуда |E| ⩽ k(k − 1).

2) Пусть m ⩾ k+1. Возьмем вершину A ∈ Xm. Она соединена с m вершинами, каждая
из которых лежит в Xm−1. Отсюда |Xm−1| ⩾ m. Возьмем вершину B ∈ Xm−1. Она
соединена с m − 1 вершинами (каждая из которых лежит в Xm или в Xm−2). Значит,
|V | ⩾ |Xm−1|+ |Xm|+ |Xm−2| ⩾ m+m− 1 ⩾ k + 1 + k > 2k = |V | — противоречие.

3) Остается рассмотреть случай m = k. Каждое ребро соединяет вершину из множества
Y = Xk ∪ Xk−2 ∪ Xk−4 ∪ . . . с вершиной из множества Z = Xk−1 ∪ Xk−3 ∪ Xk−5 ∪ . . ..
Поэтому |E| равно количеству ребер, исходящих из Y , следовательно, |E| ⩽ k · |Y |. А
также |E| равно количеству ребер, исходящих из Z, откуда |E| ⩽ (k − 1) · |Z|.

Если |Y | ⩽ k− 1, то в силу первого неравенства |E| ⩽ k · |Y | ⩽ k(k− 1). Иначе |Y | ⩾ k,
но тогда |Z| ⩽ k, и в силу второго неравенства, |E| ⩽ (k − 1) · |Z| ⩽ (k − 1) · k.

Итак, во всех случаях доказана оценка |E| ⩽ (k − 1)k.
Замечание. В оценке случай 1 может быть разобран так же, как случай 3.

(Z) Только верный ответ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не добавляются
(Y) Переформулировка на языке графов. . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не добавляются
(A) Приведен верный пример с k(k − 1) ребрами. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла
(B) Полностью доказана оценка |E| ⩽ k(k − 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 баллов

(B1) В оценке разобран случай m ⩽ k − 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл
(B2) В оценке разобран случай m ⩾ k + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(B3) В оценке разобран случай m = k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 балла

В случае не полностью доказанной части «Оценка» баллы за частичные продвиже-
ния (B1), (B2), (B3) суммируются. Набранные баллы по частям (A) («Пример») и (B)
(«Оценка») суммируются.

10.9. Дан остроугольный неравнобедренный треугольник ABC, в котором ∠BAC = 60◦. Точки
D и E симметричны его центру описанной окружности O относительно сторон AB и AC
соответственно. Прямая DE пересекает отрезки AB и AC в точках F и G соответственно.
Докажите, что описанные окружности треугольников BDF и CEG касаются.

Решение. Пусть B′ и C′ — середины AC и AB. Тогда B′C′ — средняя линия в тре-
угольнике ODE, поэтому DE ∥ B′C′ ∥ BC и DE = 2B′C′ = BC. Значит, CEDB —
параллелограмм.

Далее, ∠BOD = 1
2∠BOA = ∠BCA = ∠CGE. Тем самым дуги BOD и CGE равны

по величине и построены на противоположных сторонах параллелограмма CEDB внутрь
него. Следовательно, эти дуги симметричны относительно центра параллелограмма N .
Значит, дуга CGE проходит через точку O′, симметричную точке O относительно N ,
Аналогично, O′ лежит на окружности (BDF ).

Остается доказать касание окружностей. Для этого достаточно установить равенство
∠DO′E = ∠DBO′ + ∠O′CE (тогда касательная m, проведенная к (BDFO′) в точке O′

будет составлять с O′E угол равный ∠O′CE, а значит, m будет являться и касательной к
(CGEO′)).

Используя симметрию относительно N и относительно прямых AB и AC, получаем
∠DO′E = ∠COB = 120◦, а также ∠DBO′ = ∠CEO = ∠EOC = 1

2∠AOC = ∠ABC и
аналогично ∠O′CE = ∠BCA. Видим, что ∠DBO′ + ∠O′CE = ∠ABC + ∠BCA = 120◦ =
= ∠DO′E. Тем самым доказательство завершено.
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Замечание. Можно решить задачу, используя другие описания точки касания. На-
пример, определим O′ как вторую точку пересечения окружностей (BOC) и (FOG). То-
гда из счета углов (с использованием вписанных четырехугольников) можно получить
∠GO′C+∠GOC = 180◦, значит окружности (GO′C) и (GOC) симметричны относительно
GC, т.е. окружность (GO′C) совпадает с нашей окружностью (GEC). Аналогично (FO′B)
совпадает с окружностью (FDB).
Далее ∠CO′B = ∠COB = 120◦, а ∠CGO′ + ∠O′FB = ∠CGO′ + ∠O′GO − ∠O′FO +
+ ∠O′FB = ∠CGO + ∠OFB = ∠EGC + ∠BFD = ∠BCA + ∠ABC = 120◦. Получили
равенство ∠CO′B = ∠CGO′ + ∠O′FB, которое доказывает касание наших окружностей
(CGO′) и (BFO′).
Также можно доказать, что наша точка касания O′ на самом деле является ортоцентром
треугольника ABC.

(A) Найдено (и обосновано) одно из перечисленных в решении и замечании описание общей
точки окружностей BDF и CEG (но касание не доказано). . . . . . . . . . . . . . . . . . . . . . 3 балла

10.10. Дан многочлен f третьей степени с целыми коэффициентами, причём старший коэффи-
циент f равен 1 или −1. Известно, что f имеет три различных корня, каждый из которых
равен квадрату натурального числа. Докажите, что в последовательности значений |f(1)|,
|f(2)|, |f(3)|, . . . встретится квадрат натурального числа.

Решение. Из условия следует, что f(x) = ±(x − a2)(x − b2)(x − c2), где a, b, c — нату-
ральные числа. Далее, не умаляя общности, считаем, что a ⩽ b ⩽ c.

Положим n = ac+bc−ab. Очевидно, n — натуральное (так как n > bc−ab = b(c−a) ⩾ 0).
Тогда n− a2 = ac+ bc− ab− a2 = (a+ b)(c− a), n− b2 = ac+ bc− ab− b2 = (a+ b)(c− b),
n− c2 = ac+ bc− ab− c2 = (a− c)(c− b). Тогда f(n) = ∓(a+ b)2(c− a)2(c− b)2, что нам и
подходит.

(A) За переформулировку без многочлена (в терминах выражения (x− a2)(x− b2)(x− c2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не начисляются

(B) За нахождение значений 0 (в точках x = a2, x = b2, x = c2) . . . баллы не начисляются
(C) Отмечено, что |f(0)| — точный квадрат . . . . . . . . . . . . . . . . . . . . . . . . баллы не начисляются
(D) Отмечено, что |f(−ab− bc− ca)| — квадрат натурального числа. . . . . . . . . . . . . . 2 балла
(E) Верно найдено нужное целое значение n, но не доказано, что оно положительно

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . снимается 1 балл
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11 класс
11.6. Существуют ли такие составные натуральные числа m > n > 1, что у чисел m, n, m + n

и m− n наибольший делитель, отличный от самого числа, одинаковый?
Ответ: Существуют.
Решение. Положим m = 22, n = 55. Тогда m + n = 77 и m − n = 33, у каждого из

четырёх чисел наибольший делитель, отличный от самого числа, равен 11.
Замечание. Несложно показать, что все примеры имеют вид n = 2A,m = 5A, где

A > 1 — натуральное число, не кратное 2, 3, 5 и 7.
(A) Отсутствие обоснования верного примера . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются

(A1) Арифметические ошибки при вычислении верного примера, не влияющие на суть реше-
ния . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются

(B) Приведён верный пример, а также ещё и хотя бы один неверный пример, про который
ошибочно утверждается, что этот пример правильный . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 балла

(Z) Нет верного примера . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
11.7. По кругу расставили 2026 попарно различных иррациональных чисел и для каждой пары

стоящих рядом чисел a и b вычислили значение выражения
ab

a− b
. Может ли ровно одно

из 2026 полученных значений быть иррациональным?
Ответ: Не может.
Решение 1. Заметим, что для ненулевых a ̸= b число

f(a, b) =
ab

a− b

рационально в том и только в том случае, когда рационально обратное число a−b
ab = 1

b−
1
a .

Обозначим числа, расставленные по кругу, через a1, a2, . . . , an, где n = 2026 и предполо-
жим, что рациональные значения были получены для всех пар, кроме пары an, a1. То-
гда, в силу сказанного выше, числа 1

a1
− 1

a2
, 1
a2

− 1
a3

, . . . , 1
an−1

− 1
an

— все рациональные.

Следовательно, их сумма 1
a1

− 1
an

— тоже рациональное число, а это означает, что число
f(an, a1) также рационально, противоречие.

Решение 2. Как и в первом решении, положим f(a, b) = ab
a−b . Покажем, что если числа

f(a, b) = x и f(b, c) = y рациональны, то число f(a, c) тоже рационально. Мы знаем, что
ab = ax− bx и bc = by− cy, откуда a = bx

x−b и c = by
y+b . Отметим, что знаменатели отличны

от нуля, поскольку числа x и y рациональны, а число b иррационально, а также x ̸= −y,
поскольку a ̸= c. Таким образом

f(a, c) =

bx
x−b ·

by
y+b

bx
x−b −

by
y+b

=
b2xy

bx(y + b)− by(x− b)
=

xy

x+ y
∈ Q.

Перейдём к решению задачи. Обозначим числа, расставленные по кругу, через
a1, a2, . . . , an, n = 2026. Пусть числа f(ai, ai+1) рациональны при i = 1, 2, . . . , n − 1. По-
скольку f(a1, a2) ∈ Q и f(a2, a3) ∈ Q, то f(a1, a3) ∈ Q. Так как ещё и f(a3, a4) ∈ Q,
получаем, что f(a1, a4) ∈ Q. Продолжая это рассуждение, мы получаем, что все числа
f(a1, ai) рациональны, в частности, число f(a1, an), противоречие.

(A) В решениях, аналогичных приведённым выше, отсутствуют пояснения о том, что зна-
менатели отличны от нуля (ab ̸= 0 в первом решении и b − x ̸= 0, x + y ̸= 0 во втором
решении) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются

(B) Промежуточные вычисления содержат деление на выражение, которое может быть рав-
но нулю . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не более 4 баллов

11.8. Четырёхугольник ABCD вписан в окружность с центром в точке O. Биссектрисы его
углов A и C пересекаются в точке E, а биссектрисы углов B и D — в точке F , причём
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точки O, E и F лежат внутри четырёхугольника. Описанные окружности треугольников
ACE и BDF пересекаются в точках P и Q. Докажите, что точки O, P и Q лежат на одной
прямой.

Решение. Можно считать, что точка E лежит в той же полуплоскости относительно
прямой AC, что и точка D. Пусть углы BAD и BOC равны соответственно 2α и 2β.
Тогда вписанный угол CAB равен β. Значит, ∠EAC = ∠EAB − ∠CAB = α − β. Так
как четырёхугольник ABCD вписанный, то ∠BCD = 180◦ − ∠BAD = 180◦ − 2α, откуда
∠BCE = 90◦ − α. Из равнобедренного треугольника BOC находим ∠BCO = 90◦ − β.
Поэтому ∠ECO = ∠BCO − ∠BCE = α − β, следовательно ∠EAC = ∠ECO, то есть
окружность (ACE) касается прямой OC. Аналогично, окружность (BDF ) касается пря-
мой OB. Таким образом, степени точки O относительно этих окружностей равны OC2 и
OB2 соответственно. Значит, точка O лежит на их радикальной оси, то есть прямой PQ.

E

A

B

C

D

F

P

Q

O

Комментарии.
1. Поскольку ∠EAC = α − β, то в разбираемом расположении точек α > β. Поэтому

∠BCO = 90◦ − β > 90◦ − α = ∠BCE, то есть точка O лежит внутри угла DCE, и
вычисление ∠ECO = ∠BCO − ∠BCE = α− β корректно.

2. Можно показать, что на прямой PQ также лежит и точка пересечения диагоналей
четырёхугольника ABCD.

3. Хорошо известно, что внутренние биссектрисы четырёхугольника ABCD образуют
четырёхугольник, вписанный в окружность. Аналогичное верно и для внешних биссектрис
четырёхугольника. Тогда можно показать, что центры получившихся окружностей лежат
на прямой PQ, кроме того, это верно не только для вписанных четырёхугольников ABCD,
а для любых выпуклых.

4. Как обычно, через (XY Z) обозначается описанная окружность треугольника XY Z.
(A) Требуемое в задаче переформулировано в терминах равенства степеней точки O отно-

сительно окружностей (ACE) и (BDF ) . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не начисляются
(B) Заявлено, что прямая OC касается окружности (ACE) . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(C) Доказано, что прямая OC касается окружности (ACE) . . . . . . . . . . . . . . . . . . . . . . . 3 балла
(C′) Указано, что касание следует из подсчёта углов, но сам подсчёт углов не приведён

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(C1) Доказано равенство углов EAC и ECO или иное равенство углов, из которого следует

касание (C), но вывод про касание не сделан . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(C0) Подсчеты углов без дальнейших продвижений . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(D) Из утверждения (B) и аналогичного ему для окружности (BDF ) выведено решение

задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла
(M) Доказано, что степени точки O относительно окружностей (ACE) и (BDF ) равны, но

вывод о коллинеарности точек O, P , Q отсутствует . . . . . . . . . . . . . . . . . . . . снимается 1 балл
Штраф (M) применяется при отсутствии вывода о том, что точки O,P,Q лежат

на одной прямой в полном решении или в частичном продвижении (D). Например, в ра-
боте сказано, что степени точки O относительно окружностей равны, это и требова-
лось доказать, однако нигде не указывалось, что такое равенство степеней равносильно
требуемому в задаче или что PQ — радикальная ось двух окружностей.



LII Всероссийская математическая олимпиада школьников

С другой стороны, если без дополнительных пояснений утверждается, что из ра-
венства степеней точки O относительно окружностей следует, что точки O, P , Q
лежат на одной прямой, баллы НЕ снимаются.

(X) Доказано, что точка пересечения AC и BD лежит на PQ . . . . . . . . . . . . . . . . . . . . 0 баллов
(G) Нет объяснений о расположении точек O, E, F (например, как в пункте 1 замечания)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются
Баллы за части (A), (B), (C) суммируются.

11.9. Даны натуральные числа n > k ⩾ 2. В клетчатом квадрате n × n закрашено несколько
клеток. В каждой строке и в каждом столбце есть хотя бы одна закрашенная клетка,
причём в каждом ряду (строке или столбце) закрашенные клетки идут подряд. Известно,
что нет целиком закрашенного квадрата k × k. Какое наибольшее число клеток может
быть закрашено?

Ответ: 2n(k − 1)− (k − 1)2.

Решение. Пример. Закрасим верхние k − 1 строку и левый k − 1 столбец. Тогда будет
закрашено ровно 2n(k − 1)− (k − 1)2 клеток в соответствии с условием задачи.

Оценка. Пусть закрашенных клеток не меньше, чем 2n(k− 1)− (k− 1)2+1. Покажем,
что есть полностью закрашенный квадрат k × k. Отметим в каждой строке k − 1 самых
левых закрашенных клеток. Если в какой-то из строк закрашено меньшее число клеток,
отмечаем все закрашенные клетки этой строки. Таким образом, отмечено не более n(k−1)
закрашенных клеток, причем в первых k−1 столбцах отмечены все закрашенные клетки.

Тогда закрашенных, но не отмеченных клеток не меньше, чем

2n(k − 1)− (k − 1)2 + 1− n(k − 1) = (n− k + 1)(k − 1) + 1.

Следовательно, в каком-то из оставшихся n− k+1 столбцов есть хотя бы k закрашенных
не отмеченных клеток. Выберем в таком столбце верхнюю и нижнюю из таких клеток,
обозначим их через A и B соответственно.

Рассмотрим клетчатый прямоугольник, у которого горизонтальная сторона равна k,
правая верхняя угловая клетка — клетка A, правая нижняя угловая клетка — клетка B.
Тогда вертикальная сторона такого прямоугольника ℓ не меньше, чем k. Пусть A1 — его
верхняя левая угловая клетка. Тогда A1 лежит в одной строке с клеткой A, причём клетка
A закрашена и не отмечена. Значит, k − 1 клетка в этой строке левее клетки A закраше-
ны, поэтому обязательно закрашена клетка A1. Аналогично, и нижняя угловая клетка
рассмотренного прямоугольника k× ℓ закрашена, следовательно, этот прямоугольник за-
крашен целиком. Поскольку ℓ ⩾ k, мы можем выделить и целиком закрашенный квадрат
k × k, что и требовалось.

(A) Ответ и пример 2n(k − 1) − (k − 1)2 закрашенных клеток, удовлетворяющий условию
задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла

(AM) Ошибка в подсчёте ответа. В частности, если в качестве ответа указано число, отлича-
ющееся от верного ответа на 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . снимается 1 балл за часть (А)

(B) Оценка, то есть доказательство, что если закрашены хотя бы 2n(k − 1) − (k − 1)2 + 1
клеток, то можно найти закрашенный целиком квадрат k × k . . . . . . . . . . . . . . . . . . 5 баллов

(B0) Сведение к случаю, когда в каждом ряду закрашена хотя бы k − 1 клетка . . 0 баллов
(B1) Закрашенные клетки разбиты на две группы, отмеченные и не отмеченные, как в при-

ведённом решении . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл
(BM) Оценка доказывается в предположении, что в каждой строке отмечена ровно k−1 клетка

(и сведение к этому случаю отсутствует) . . . . . . . . . . . . . . . . . снимается 1 балл за часть (B)
(B2) Доказано, что в каком-то столбце есть хотя бы k закрашенных не отмеченных клеток,

если всего закрашено хотя бы 2n(k − 1)− (k − 1)2 + 1 клеток . . . . . . . . . . . . . . . . . . . . .1 балл
(B3) Доказано, что существует полностью закрашенный квадрат k×k, у которого найденный

в (B2) столбец — крайний правый . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
(B3a) Доказано, что не отмеченные закрашенные клетки в каждой вертикали идут подряд

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл



Региональный этап, 2025–2026 учебный год

(B3b) Утверждение (B3) сформулировано, но не доказано. Например, без доказательства ис-
пользуется (B3a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл

Продвижения (B3), (B3a), (B3b) не суммируются. Остальные продвижения (и штра-
фы) по оценке суммируются между собой и суммируются с баллами за пример.

11.10. Пусть a, b, c— положительные числа, причём a+ b+ c = 3. Докажите, что

a

b4 + 2b
+

b

c4 + 2c
+

c

a4 + 2a
⩾ 1.

Решение 1. Заметим, что

a

b4 + 2b
=

a

b
− 2ab2

b3 + 2
⩾

a

b
− 2ab2

3b
=

a

b
− 2

3
ab. (⋆)

Здесь мы воспользовались тем, что b3 + 2 = b3 + 1 + 1 ⩾ 3
3√
b3 · 1 · 1 = 3b. Оценим две

другие дроби аналогично. По неравенству о средних

a

b
+

b

c
+

c

a
⩾ 3

3

√
a

b
· b
c
· c
a
= 3.

Кроме того, из неравенства Коши мы получаем, что

3(ab+ bc+ ca) = ab+ bc+ ca+ 2ab+ 2bc+ 2ac ⩽

a2 + b2

2
+

b2 + c2

2
+

c2 + a2

2
+ 2ab+ 2bc+ 2ac = (a+ b+ c)2 = 9,

Поэтому ab+ bc+ ca ⩽ 3. Собирая все оценки вместе, получаем требуемое неравенство:

a

b4 + 2b
+

b

c4 + 2c
+

c

a4 + 2a
⩾

a

b
+

b

c
+

c

a
− 2

3
(ab+ bc+ ca) ⩾ 3− 2

3
· 3 = 1.

Решение 2. По неравенству о средних: 3 = a+ b+ c ⩾ 3 3√abc, поэтому abc ⩽ 1. Тогда
заметим, что

a

b4 + 2b
⩾

a

b4
abc + 2b

=

a2

b2

b
c + 2 · ab

= T. (⋆ ⋆)

Положим a
b = x, b

c = y, c
a = z, отметим, что xyz = 1. В новых обозначениях

T =
x2

y + 2x
.

Оценивая аналогично два других слагаемых, нам остаётся доказать, что

x2

2x+ y
+

y2

2y + z
+

z2

2z + x
⩾ 1. (⋆ ⋆ ⋆)

Заметим, что по неравенству о средних x + y + z ⩾ 3 3√xyz = 3. Наконец, применим к
сумме дробей неравенство Коши-Буняковского-Шварца:

x2

2x+ y
+

y2

2y + z
+

z2

2z + x
⩾

(x+ y + z)2

2x+ y + 2y + z + 2z + x
=

x+ y + z

3
⩾ 1.

Критерии оценивания для решения 1. Решение разбивается на 3 части:
(A) — оценка (⋆);
(B) — оценка выражения a/b+ b/c+ c/a и сведение к неравенству ab+ bc+ ca ⩽ 3;
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(C) — доказательство неравенства ab+ bc+ ca ⩽ 3.
Продвижения за части (A), (B), (C) суммируются. Баллы внутри каждой из частей

друг с другом не суммируются.
(A) Доказана оценка (⋆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

(A1) Сформулирована оценка (⋆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(A2) Приведён рабочий план доказательства оценки (⋆) с ошибками в переходах или без

достаточных обоснований некоторых неравенств . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла
Примеры применения критерия (A2).

• При доказательстве оценки (⋆) неравенство 2ab2/(b3 + 2) ⩽ 2ab2/(3b) не поясняется
или доказывается неверно.
• Неравенство b3 + 2 ⩾ 3b при b > 0 используется без доказательства.

(B) Задача сведена к доказательству неравенства ab+ bc+ ca ⩽ 3 . . . . . . . . . . . . . . . . . 2 балла
(B0) После оценки (⋆) без дополнительных пояснений утверждается, что достаточно доказать

неравенство ab+ bc+ ca ⩽ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(B1) Неравенство a/b + b/c + c/a ⩾ 3 при a, b, c > 0 используется без доказательства или

формулируется как известный факт . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются
(B2) После оценки (⋆) указано, что a/b + b/c + c/a ⩾ 3, при этом отсутствует вывод, что

теперь достаточно доказать неравенство ab+ bc+ ca ⩽ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(C) После оценки (⋆) доказано неравенство ab+ bc+ ca ⩽ 3 . . . . . . . . . . . . . . . . . . . . . . . .2 балла

Примеры применения критерия (C).
• Неравенство ab + bc + ca ⩽ 3 использовано без обоснования или сформулировано как
известный факт — ставится 0 баллов.
• Неравенство ab+bc+ca ⩽ 3 доказано с неточностями или пробелами в обоснованиях —
ставится не более 1 балла.
• Неравенство ab+bc+ca ⩽ 3 доказано, но в работе нет оценки (⋆) — ставится 0 баллов.

Критерии оценивания для решения 2.
(P) Доказана оценка (⋆ ⋆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла
(Q) После замены переменных задача сведена к неравенству (⋆ ⋆ ⋆) . . . . . . . . . . . . . . . 2 балла
(R) Доказательство неравенства (⋆ ⋆ ⋆) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
(Z) Доказано, что abc ⩽ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(Z′) Сформулировано, что abc ⩽ 1 и далее используется без дополнительных пояснений

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются
(M1) Используется, что abc ⩽ 1, но этот факт даже не формулируется . . . снимается 1 балл
(M2) Неравенство доказано при условии abc = 1, а не a+ b+ c = 3 . . . . . . снимается 2 балла

Продвижения по частям (P), (Q), (R) суммируются друг с другом и со штрафами
(M). При этом сами штрафы (M1) и (M2) не суммируются.


