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Введение

Порядок проведения, методика и система оценивания (проверки) регионального
этапа Всероссийской олимпиады школьников по математике 2025–2026 учебного

года.

Региональный этап Всероссийской олимпиады школьников по математике 2025–2026 учебного
года проводится по заданиям, подготовленным Центральной предметно-методической комиссией,
в единые для всех субъектов РФ сроки: 2 февраля 2026 г. (I тур) и 3 февраля 2026 г. (II тур).
Региональный этап проводится по отдельным заданиям для учащихся 9, 10 и 11 классов.

Задания для каждого класса включают 10 задач — по 5 задач в каждом из двух дней (туров)
Олимпиады (задачи 1–5 — I тур, задачи 6–10 — II тур). Продолжительность каждого тура для
каждого класса составляет 3 часа 55 минут.

В силу того, что во всех субъектах Российской Федерации региональный этап проводится
по одним и тем же заданиям, подготовленным Центральной предметно-методической комиссией,
в целях предотвращения преждевременного доступа к текстам заданий со стороны участников
Олимпиады, а также их учителей и наставников, время начала и окончания туров в установлен-
ные даты в каждом субъекте РФ должно определяться в соответствии с «Временны́ми регла-
ментами проведения туров регионального этапа Всероссийской олимпиады школьни-
ков в субъектах Российской Федерации в 2025–2026 учебном году» для часовых поясов.

Разбор задач в субъектах Российской Федерации, где тур оканчивается в 16.00 и 17.00 по
местному времени, проводится не раньше, чем на следующий день после проведения второго
тура Олимпиады.

Решение каждой задачи оценивается целым числом баллов от 0 до 7. Максимальное количе-
ство баллов, которое может получить участник, равно 70 (35 — I тур, 35 — II тур).

Задания математических олимпиад являются творческими, допускают несколько различных
вариантов решений. Кроме того, необходимо оценивать частичные продвижения в задачах (на-
пример, разбор важного случая, доказательство вспомогательного утверждения, нахождение при-
мера и т. п.). Наконец, возможны логические и арифметические ошибки в решениях. Окончатель-
ные баллы по задаче должны учитывать всё вышеперечисленное.

Проверка работ осуществляется в соответствии со следующими правилами:
а) любое правильное решение оценивается в 7 баллов. Недопустимо снятие баллов за то, что

решение слишком длинное, или за то, что решение школьника отличается от приведённого в
методических разработках;

б) недопустимо снятие баллов в работе за неаккуратность записи решений;
в) баллы не выставляются «за старание Участника», в том числе за запись в работе большого

по объёму текста, не содержащего продвижений в решении задачи;
г) черновики не проверяются.
В связи с необходимостью качественной оценки работ участников, на их проверку выделяется

до 7 дней.
Для единообразия оценки работ участников олимпиады из разных регионов и с целью исклю-

чения при этом ошибок, Центральная предметно-методическая комиссия имеет право перепро-
верки работ участников регионального этапа.

В случае отсутствия специальных критериев по задаче, её решение оценивается по приведён-
ной ниже таблице (отметим, что для исключения различий в оценке близких продвижений по
задаче в работах разных участников, таблица упрощена по сравнению с приведённой в Требова-
ниях по проведению регионального этапа).
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Баллы Правильность (ошибочность) решения
7 Полное верное решение.

5–7 Верное решение. Имеются недочёты, в целом не
влияющие на решение.

1–4 Задача не решена, но в работе имеются существен-
ные продвижения.

0 Аналитическое решение (координатным, вектор-
ным, тригонометрическим методом) геометриче-
ской задачи, не доведённое до конца.

0 Рассмотрение частного случая, не дающее продви-
жений в решении в общем случае.

0 Верное решение отсутствует, существенных продви-
жений нет.

Ниже приведены ответы и решения к задачам олимпиады. В комментариях к задачам указаны
критерии оценивания (в баллах) некоторых предполагаемых ошибок и частичных продвижений.
Заметим, что работа участника, помимо приведённых, может включать другие содержательные
продвижения и ошибки, которые должны быть оценены дополнительно.

Желаем успешной работы!
Авторы и составители сборника
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9 класс
9.1. Числа a, b и c таковы, что a2 + b2 < (a− b)2 и b2 + c2 < (b− c)2. Докажите, что a4 + c4 <

< (a+ c)4.
Решение. По условию, a2 + b2 < (a− b)2 = a2 − 2ab+ b2, поэтому ab < 0. Аналогично,

bc < 0. Таким образом, числа a и b разных знаков, и числа b и c также разных знаков.
Поэтому числа a и c одного знака и, значит, ac > 0. Следовательно, (a + c)4 − (a4 +
+ c4) = 4a3c + 6a2c2 + 4ac3 > 0, поскольку каждое слагаемое положительно. Отсюда
(a+ c)4 > a4 + c4.

(⋆) Разбор лишь частных случаев, навример, конкретных значений a, b и c . . . . . . 0 баллов
9.2. В клетчатом квадрате 11×11 отметили все 144 вершины клеток. Затем отмеченные точки

раскрасили в пять цветов. При каком наибольшем d могло оказаться, что расстояние
между любыми двумя одноцветными отмеченными точками не меньше d?

Ответ: d =
√
5.

Решение. Оценка. Рассмотрим в нашем квадрате любые две клетки, имеющие общую
сторону. У них всего 6 вершин; расстояние между любыми двумя из них не превосхо-
дит

√
5. Но какие-то из этих двух точек имеют один и тот же цвет, так что в любом слу-

чае найдутся две одноцветных точки на расстоянии, не большем
√
5.

Пример. На самом деле, можно раскрасить не только данные 144 точки, но и все вер-
шины клеток бесконечной клетчатой плоскости так, чтобы расстояния между одноцвет-
ными точками было не меньше

√
5. Пример такой раскраски приведён на рисунке ниже

(она переходит в себя при сдвиге на 5 вдоль любой из координатных осей). В этой раскрас-
ке одним цветом окрашены все точки с целыми координатами (x, y), для которых число
2x+ y даёт фиксированный остаток при делении на 5.

Замечание. Как ни странно, существуют и другие способы доказать оценку. Например,
можно заметить, что точек одного из цветов не меньше 29; однако все точки нетрудно
разбить даже на 24 группы, в каждой из которых точки удалены друг от друга не более чем
на

√
5 (например, это можно сделать так, чтобы в каждой группе точки были вершинами

двух клеток, имеющих общее ребро). Значит, в одной из групп окажутся две точки нашего
цвета, и расстояние между ними будет не больше

√
5.

(О) Доказательство того, что d ⩽
√
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 балла

(О′) Неточная оценка — доказательство того, что d не превышает некоторой константы c,
которая не меньше

√
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не оценивается

(П) Пример раскраски точек, для которой d =
√
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

При верном примере проверка того, что он подходит, не требуется!
(П′) Неоптимальный пример, в котором достигается лишь некоторое значение d <

√
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не оценивается
9.3. Петя и Вася играют в игру. В начале игры на столе лежат 1000 куч, состоящих из 1,

2, 3, 4, . . . , 999, 1000 спичек соответственно. Ребята ходят по очереди, начинает Петя.
Каждый из мальчиков своим ходом может взять любое ненулевое количество спичек из
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кучи с наибольшим количеством спичек (ровно из одной из таких куч, если их несколько).
Выигрывает тот, кто заберёт последнюю спичку. Кто из мальчиков может играть так,
чтобы гарантированно выиграть?

Ответ: Петя.
Решение 1. Опишем стратегию, позволяющую Пете гарантированно забрать послед-

нюю спичку. Для этого он на каждом ходе будет делать так, чтобы количество куч, со-
держащих максимальное количество спичек, было чётным (такие позиции будем называть
правильными).

Докажем, что (1) перед каждым ходом Пети позиция будет неправильной, и (2) он все-
гда сможет сделать ход, добившись правильной позиции. На первом ходе Пете достаточно
взять 1 спичку (из кучи с 1000 спичками), добившись правильной позиции.

Далее, если перед ходом Васи позиция правильная, то после его хода хотя бы одна
из наибольших куч останется нетронутой, то есть наибольшее число спичек в куче не
изменится. При этом их количество уменьшится ровно на 1, то есть позиция перед ходом
Пети станет неправильной.

Пусть теперь перед ходом Пети позиция неправильная, причём в ней ровно a кучек,
содержащих максимальное количество спичек (число a нечётно). Если a > 1, то Петя,
например, забирает полностью одну из максимальных кучек, и позиция становится пра-
вильной (в ней a− 1 максимальная кучка).

Если же a = 1, то пусть k — число спичек в следующей за максимальной по величине
непустой кучке, и пусть кучек, содержащих k спичек, ровно b (если других непустых кучек
нет, то b = 0). Если число b чётно, то Петя просто заберёт наибольшую кучку (в частности,
если других кучек нет, то Петя заберёт последнюю спичку). Если же b нечётно, то Петя
забирает столько спичек, чтобы в кучке осталось k спичек, и таких кучек станет b+ 1; во
всех случаях позиция снова станет правильной.

Итак, Петя всегда сможет поддерживать описанные свойства — в частности, Вася ни-
когда не сможет забрать последнюю спичку (в правильной ситуации это невозможно). Так
как число спичек уменьшается, это рано или поздно сделает Петя и выиграет.

Решение 2. Заметим, что игра закончится не более чем за 10002 ходов. Тогда у одного
из мальчиков обязательно есть выигрышная стратегия. Предположим, что её нет у Пети;
тогда она есть у Васи.

Пусть Петя первым ходом возьмёт 1 спичку (из кучи с 1000 спичками), а в ответ Вася
(по своей стратегии) возьмёт некоторое количество n спичек из кучи c 999 спичками.
По нашему предположению, в получившейся позиции выигрывает Вася, то есть игрок,
ходящий вторым.

Но этой же позиции мог добиться Петя, взяв на первом ходе n + 1 спичку из кучи с
1000 спичками. Действуя по той же стратегии, он гарантированно выиграет. Полученное
противоречие означает, что у Васи нет выигрышной стратегии, а значит, она есть у Пети.

Комментарий. Метод, описанный во втором решении, называется передачей хода.
Критерии оценивания для решения 1.

(О) Только ответ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(1) Сформулировано понятие правильной позиции и заявлено, что Пете достаточно доби-

ваться правильной позиции на каждом ходе . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 балла
(X) Замечено, что при каждом ходе число наибольших куч уменьшается на 1, если оно было

больше 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(2В) Сформулировано и доказано, что при ходе Васи из правильной позиции получается

неправильная . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл
(3П) Сформулировано и доказано, что Петя может получить правильную позицию из непра-

вильной, если a > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл
Если в решении содержится стратегия для случая (3П), однако явно не указано,

что она работает только в случае a > 1, баллы по критерию (3П) не начисляются.
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(4П) Сформулировано и доказано, что Петя может получить правильную позицию, если a = 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

Баллы за продвижения (1), (2В), (3П), (4П) суммируются. Баллы за (X) не сумми-
руются с баллами за (2В) и (3П), но суммируются с баллами за (1) и (4П).

Критерии оценивания для решения 2.
(Z) Не поясняется, почему хотя бы у одного из игроков есть выигрышная позиция или без

объяснения используется существование структуры выигрышных и проигрышных пози-
ций . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются

9.4. Существует ли такое натуральное число n, что для каких-то трёх его делителей a, b, c,
больших 1, произведение (a− 1)(b− 1)(c− 1) делится на n2?

Ответ: не существует.
Решение 1. Предположим, что такие n, a, b и c нашлись.
Не умаляя общности, считаем, что a ⩽ b ⩽ c. Так как c — делитель числа n, то n2 делит-

ся на c2. Следовательно, (a−1)(b−1)(c−1) делится на c2. А поскольку НОД(c− 1, c) = 1,
получаем, что (a− 1)(b− 1) делится на c2.

Однако 0 < (a − 1)(b − 1) < ab ⩽ c · c = c2 (в силу a ⩽ c и b ⩽ c), что противоречит
делимости (a− 1)(b− 1) на c2.

Решение 2. Предположим, что такие n, a, b и c нашлись.
Рассмотрим какой-то простой делитель p числа n. Предположим, что его степень вхож-

дения в n равна α (то есть νp(n) = α). Если все числа a, b и c делятся на p, то числа a− 1,
b− 1, c− 1 не делятся на p, но тогда и их произведение не делится на p, и следовательно,
оно не может делиться и на n2 — противоречие.

Значит, среди трёх чисел a, b и c на p может делиться не более двух, в разложение
каждого из которых p входит не более, чем в степени α (поскольку a, b, c — делители n).
Тогда p входит в разложение числа abc в степени не более 2α (то есть νp(abc) ⩽ 2α).

Видим, что для каждого простого делителя числа n степень его вхождения в abc не бо-
лее чем степень его вхождения в n2 (νp(abc) ⩽ 2α = νp(n

2)). А других простых делителей

у abc нет. Следовательно, n2
... abc, откуда n2 ⩾ abc.

Поэтому 0 < (a− 1)(b− 1)(c− 1) < abc ⩽ n2, что противоречит делимости (a− 1)(b−
− 1)(c− 1) на n2.

(A) Из условия выведено, что (a − 1)(b − 1) делится на c2 (или аналогичная делимость)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

(B) Доказано, что НОД(a, b, c) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не добавляются
(C) Доказано, что νp(abc) ⩽ νp(n

2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
Баллы за продвижения (A) и (C) НЕ суммируются.

9.5. Выпуклые четырёхугольники ABCD и KLMN расположены так, что прямые KL, LM ,
MN и NK являются биссектрисами внешних углов A, B, C и D четырёхугольника ABCD
соответственно. При этом ABCD не является параллелограммом. Диагонали четырёх-
угольника KLMN пересекаются в точке P . Докажите, что если ∠BAD = ∠BCD < 90◦,
то PA = PC.

Решение 1. Опустим из точки P перпендикуляры PQ, PR, PS и PT на прямые AB,
BC, CD и DA соответственно. Заметим, что точка K равноудалена от прямых AB, AD
и CD. Аналогично, точка M также равноудалена от AB и CD, и обе точки K и M лежат
в том угле между этими прямыми, в котором находится четырёхугольник ABCD. Значит,
все точки отрезка KM также равноудалены от этих прямых — в частности, точка P , то
есть PQ = PS, Аналогично, PR = PT , и P лежит в том же угле между прямыми BC
и AD — то есть P находится внутри четырёхугольника ABCD.

Значит, точки Q и T лежат на лучах AB и AD соответственно (а точки R и S — на
лучах CB и CD соответственно), так что ∠QPT = 180◦−∠QAT = 180◦−∠SCR = ∠SPR,
поэтому треугольники QPT и SPR равны по двум сторонам и углу между ними. Нако-
нец, четырёхугольники AQPT и CSPR вписаны в окружности с диаметрами AP и CP
соответственно (из прямых углов при вершинах Q, T , R и S). Из равенства треугольников
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QPT и SPR следует, что эти окружности равны, а значит, равны из диаметры, что и
требовалось доказать.
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Решение 2. Если углы B и D четырёхугольника ABCD также равны, то он — парал-
лелограмм, что по условию не так. Пусть без ограничения общности ∠B > ∠D. Тогда
∠A+∠B = ∠B +∠C > 180◦; это означает, что лучи AB и DC пересекаются в некоторой
точке X, а лучи DA и CB — в некоторой точке Y . Теперь треугольники BXC и BY A по-
добны по двум углам, следовательно, ∠BXC = ∠BY A, поэтому четырёхугольник AYXC
вписанный в некоторую окружность ω.

Точка M — точка пересечения биссектрис внутренних углов треугольника BXC, а
точка K — это точка пересечения биссектрис внешних углов XAD и XDA треугольни-
ка ADX; значит, они обе лежат на биссектрисе угла AXC. Аналогично, LN — это бис-
сектриса угла AY C, а тогда P — это точка пересечения этих биссектрис. Но обе этих бис-
сектрисы проходят через середину дуги AC окружности ω, не содержащей точек X и Y ;
значит, P и есть эта середина дуги. Тогда хорды AP и PC, стягивающие равные дуги,
равны.

Замечание. Утверждение задачи остаётся верным, если ABCD — параллелограмм (в
этом случае P — центр симметрии этого параллелограмма).

Замечание. Заметим, что четырёхугольник KLMN является трапецией (KN ∥ LM).
Поэтому факт из задачи можно переформулировать следующим образом.

Пусть по бильярдному столу в форме трапеции катается шар, отражаясь последова-
тельно от четырёх сторон в одних и тех же четырёх точках. Тогда точки отражения от
боковых сторон трапеции равноудалены от точки пересечения её диагоналей.

(1) Замечено только, что точка K лежит на биссектрисе угла между прямыми AB и CD
(или аналогичные утверждения) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл

(2) Показано, что точка P лежит на биссектрисе угла между AB и CD .2 балла вместо 1
(3) Замечено, что точки A, C, X и Y лежат на одной окружности . . . . . . . . . . . . . . . . 2 балла

Баллы, упомянутые выше, не складываются друг с другом.
(⋆) В работе может отсутствовать обоснование того, что конфигурация выглядит именно

так, как в работе. Если при этом используются верные (и нетрудно обосновываемые)
сведения о расположении точек . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются

К таким сведениям относятся, в частности, следующие:
• точки A, B, C, D лежат на сторонах KLMN ;
• точка P лежит внутри четырёхугольника ABCD;
• точки K и M лежат на одной и той же биссектрисе угла между прямыми AB и
CD (если уже обосновано, что каждая из них лежит на биссектрисе);
• точки Q и T (из первого решения) лежат на лучах AB и AD соответственно;
• точки X и Y (из второго решения) лежат по одну сторону от прямой AC;
• у четырёхугольника ABCD нет параллельных сторон.
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10 класс
10.1. Даны 6 последовательных натуральных чисел. Докажите, что их можно обозначить (в

некотором порядке) буквами a, b, c, d, e, f так, чтобы число
a

b+ c
+

d

e+ f
было натураль-

ным.
Решение 1. Пусть n, n + 1, n + 2, n + 3, n + 4, n + 5 — данные натуральные числа.

Положим a = n+1, b = n, c = n+2, d = n+4, e = n+3, f = n+5. Тогда a
b+c = n+1

2n+2 = 1
2

и аналогично d
e+f = 1

2 . Видим, что сумма наших дробей равна 1.

Решение 2. Пусть n, n+1, n+2, n+3, n+4, n+5 — данные натуральные числа. Положим
a = n, b = n+1, c = n+4, d = n+5, e = n+2, f = n+3. Тогда a

b+c+
d

e+f = n
2n+5+

n+5
2n+5 = 1.

Замечание. Помимо варианта из решения 2 подходят также и другие варианты, в
которых пары b и c, e и f , a и d симметричны относительно середины отрезка [n, n+ 5]; в
таком случае b+ c = e+ f = a+ d, и наша сумма дробей равна 1.

(A) Предъявлено обозначение чисел, которое работает (даже без явного вычисления a
b+c +

+ d
e+f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 баллов

(B) Приведены частные примеры, но не ясно, как они обобщаются для произвольного n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

10.2. У Даши и у Саши есть по доске 9×9. Даша укладывает на свою доску 40 не перекрываю-
щихся плиток 1×2 (так, что плитки занимают 80 клеток, а одна клетка остается не покры-
той). Пусть у нее есть D способов сделать это. Саша красит на своей доске 41 единичных
отрезков-границ между соседними клетками, так, чтобы для каждой клетки доски хотя
бы одна ее сторона была покрашена. Пусть у Саши S способов сделать это. Докажите,
что S ⩽ 2D.

Решение. Рассмотрим одну из S Сашиных покрасок. В ней каждый из 41 покрашен-
ных отрезков принадлежит двум клеткам. Поскольку на доске всего 81 = 2 ·41−1 клеток,
видим, что у всех клеток, кроме некоторой одной клетки K, покрашена ровно одна сто-
рона, а у клетки K покрашены две стороны. Пусть в клетке K покрашены стороны a и b,
где a — граница между клетками K и A, а b — граница между клетками K и B.

Сопоставим этой Сашиной покраске две Дашиных укладки следующим образом. Пер-
вая укладка такая: забудем про отрезок a и положим 40 доминошек 1×2, у которых сред-
ними линиями служат все покрашенные Сашей отрезки, кроме a. (Понятно, что доминош-
ки не перекрываются, так как иначе, если две доминошки имели бы общую клетку, то у
этой клетки нашлись бы две покрашенные стороны.) Аналогично забудем про отрезок b
и получим вторую Дашину укладку.

С другой стороны, при указанном сопоставлении конкретная Дашина укладка сопо-
ставлена не более чем четырем Сашины покраскам, так как в такой Сашиной покраске
обязательно покрашены 40 единичных отрезков — средних линий Дашиных доминошек,
а кроме того, покрашена одна из сторон клетки, не покрытой Дашиными доминошками
(а таких сторон — 2, 3 или 4).

Итак, каждой из S Сашиных покрасок поставлено в соответствие ровно две из D Да-
шиных укладок, а каждая из D укладок соответствует не более чем четырем Сашиным
покраскам. Отсюда 2S ⩽ 4D, и мы получили S ⩽ 2D, что и требовалось.

(A) Предъявлено соответствие «покраска → укладка» либо «укладка → покраска» из ре-
шения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 балла

Если в работе имеется верное соответствие, за пробелы в доказательстве того, что
каждой покраске соответствуют ровно две укладки, а каждой укладке — не более че-
тырех покрасок, может быть снято до 3 баллов (в зависимости от величины пробела),
т.е. такая работа оценивается в 4 — 7 баллов.

10.3. Периметр выпуклого пятиугольника ABCDE равен 2. Пусть Oa, Ob, Oc, Od, Oe — центры
описанных окружностей треугольников EAB, ABC, BCD, CDE, DEA соответственно.
Пусть Ma, Mb, Mc, Md, Me — середины отрезков AOa, BOb, COc, DOd, EOe соответствен-



LII Всероссийская математическая олимпиада школьников

но. Докажите, что

MaMb +MbMc +McMd +MdMe +MeMa ⩾ 1.

Решение. Достаточно доказать, что MaMb ⩾ 1
2AB. Действительно, тогда сложив это

неравенство и четыре аналогичных (для сторон BC, CD, DE, EA), получим (с учетом
AB +BC + CD +DE + EA = 2) требуемое неравенство.

Заметим, что Oa лежит на серединном перпендикуляре к отрезку AB, иначе говоря,
проекция точки Oa на прямую AB совпадает с серединой N отрезка AB. Тогда проекция
точки Ma на прямую AB совпадает с серединой Na отрезка AN . Аналогично, проекция
точки Mb на прямую AB совпадает с серединой Nb отрезка BN . Так как длина отрезка не
меньше длины его проекции, имеем MaMb ⩾ NaNb =

1
2AB. Это мы и хотели установить.

(A) Заявлено (но не доказано или доказано неверно), что MaMb ⩾ 1
2AB (или аналогичное

неравенство) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 балла
(B) Правильно описана проекция точки Ma на AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 балла

Баллы за продвижения (A) и (B) суммируются.
10.4. Существует ли такое натуральное число n, что для каких-то трёх его делителей a, b, c,

больших 1, произведение (a− 1)(b− 1)(c− 1) делится на n2?
Ответ: не существует.
Решение 1. Предположим, что такие n, a, b и c нашлись.
Не умаляя общности, считаем, что a ⩽ b ⩽ c. Так как c — делитель числа n, то n2 делит-

ся на c2. Следовательно, (a−1)(b−1)(c−1) делится на c2. А поскольку НОД(c− 1, c) = 1,
получаем, что (a− 1)(b− 1) делится на c2.

Однако 0 < (a − 1)(b − 1) < ab ⩽ c · c = c2 (в силу a ⩽ c и b ⩽ c), что противоречит
делимости (a− 1)(b− 1) на c2.

Решение 2. Предположим, что такие n, a, b и c нашлись.
Рассмотрим какой-то простой делитель p числа n. Предположим, что его степень вхож-

дения в n равна α (то есть νp(n) = α). Если все числа a, b и c делятся на p, то числа a− 1,
b− 1, c− 1 не делятся на p, но тогда и их произведение не делится на p, и следовательно,
оно не может делиться и на n2 — противоречие.

Значит, среди трёх чисел a, b и c на p может делиться не более двух, в разложение
каждого из которых p входит не более, чем в степени α (поскольку a, b, c — делители n).
Тогда p входит в разложение числа abc в степени не более 2α (то есть νp(abc) ⩽ 2α).

Видим, что для каждого простого делителя числа n степень его вхождения в abc не бо-
лее чем степень его вхождения в n2 (νp(abc) ⩽ 2α = νp(n

2)). А других простых делителей

у abc нет. Следовательно, n2
... abc, откуда n2 ⩾ abc.

Поэтому 0 < (a− 1)(b− 1)(c− 1) < abc ⩽ n2, что противоречит делимости (a− 1)(b−
− 1)(c− 1) на n2.
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(A) Из условия выведено, что (a − 1)(b − 1) делится на c2 (или аналогичная делимость)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

(B) Доказано, что НОД(a, b, c) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не добавляются
(C) Доказано, что νp(abc) ⩽ νp(n

2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
Баллы за продвижения (A) и (C) НЕ суммируются.

10.5. В Средиземье 1000 графств, в одном из которых находится волшебное Кольцо. Раз в
день Маг может выбрать любое подмножество графств, и получить от волшебного Камня
ответ, есть ли Кольцо в одном из этих графств. Камень может ошибиться, но никогда не
ошибается два дня подряд. Маг может совершать данное действие некоторое количество
дней, после чего он должен отправить гонцов в некоторые k графств, в одном из которых
наверняка находится Кольцо. При каком наименьшем k Маг может это сделать?

Ответ: 2.
Решение. Оценка. Покажем, что при k = 1 Маг не сможет гарантированно найти

Кольцо.
Назовём одно из графств без Кольца лжеграфством. Пусть Камень отвечает на нечёт-

ных вопросах так, будто Кольцо в истинном графстве, а на чётных — будто оно во лже-
графстве. Тогда какие бы графства Маг ни загадывал, будут возможны две ситуации:
Кольцо в истинном графстве или во лжеграфстве. Действительно, в первом случае Ка-
мень отвечает верно по крайней мере на нечётных вопросах, во втором — на чётных. По-
этому Маг не сможет отличить эти ситуации ни за какое количество вопросов.

Пример. Покажем, как Маг может гарантированно разыскать Кольцо при k = 2. Вы-
берем какие-то два графства A и B: первое и второе. Зададим подряд вопросы про A, B,
B, A.

1. Если Камень на первые два вопроса ответил соответственно «да» и «нет», то т.к.
среди этих ответов был хотя бы один верный, в графстве B гарантированно нет Кольца.

2. Если он ответил «нет» и «да», в A нет Кольца.
3. Если Камень на первые два вопроса ответил «да» и «да», то т.к. среди этих ответов

был хотя бы один верный, Маг сразу отправит гонцов в A и B.
4. Если Камень на первые два вопроса ответил «нет» и «нет», смотрим на третий

вопрос. Если ответ «нет», то поскольку среди второго и третьего ответов был хотя бы
один верный, в B графстве нет Кольца.

Если же ответ на третий вопрос — «да», смотрим на четвертый вопрос. Если ответ
«да», получаем с двумя последними вопросами такую же ситуацию, как в случае 3. Если
ответ «нет», получаем ситуацию из случая 1.

В результате таких действий с двумя графствами A и B Маг либо немедленно найдет
Кольцо, либо сможет понять про одно из них, что в нём кольца нет. Тем самым, задача
сведена к той же задаче с меньшим числом графств. Повторяя такие действия, Маг до-
бьётся требуемого.

(Z) Только ответ (без обоснований или с неверным обоснованием) . . . . . . . . . . . . . . . 0 баллов
(A) Доказано только, что при k = 1 гарантированно отыскать графство с Кольцом не удаст-

ся . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(B) Приведён и обоснован верный алгоритм для k = 2, как Магу выиграть . . . . . . 5 баллов

(За пробелы в обосновании алгоритма баллы за часть (B) могут быть снижены.)
(С) Приведён алгоритм, как Магу выиграть, для некоторого k > 2 баллы не добавляются
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11 класс
11.1. Даны 6 последовательных натуральных чисел. Докажите, что их можно обозначить (в

некотором порядке) a, b, c, d, e, f так, чтобы число
a

b+ c
+

d

e+ f
было натуральным.

Решение 1. Пусть n, n + 1, n + 2, n + 3, n + 4, n + 5 — данные натуральные числа.
Положим a = n+1, b = n, c = n+2, d = n+4, e = n+3, f = n+5. Тогда a

b+c = n+1
2n+2 = 1

2

и аналогично d
e+f = 1

2 . Видим, что сумма наших дробей равна 1.

Решение 2. Пусть n, n+1, n+2, n+3, n+4, n+5 — данные натуральные числа. Положим
a = n, b = n+1, c = n+4, d = n+5, e = n+2, f = n+3. Тогда a

b+c+
d

e+f = n
2n+5+

n+5
2n+5 = 1.

Замечание. Помимо варианта из решения 2 подходят также и другие варианты, в
которых пары b и c, e и f , a и d симметричны относительно середины отрезка [n, n+ 5]; в
таком случае b+ c = e+ f = a+ d, и наша сумма дробей равна 1.

(A) Предъявлено обозначение чисел, которое работает (даже без явного вычисления a
b+c +

+ d
e+f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 баллов

(B) Приведены частные примеры, но не ясно, как они обобщаются для произвольного n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

11.2. Две равные окружности ω1 и ω2 проходят через точку A. На окружности ω1 отмечена
точка B так, что прямая AB касается окружности ω2. На окружности ω2 отмечена точка
C так, что прямая AC касается окружности ω1. Прямая, проходящая через точку A,
повторно пересекает окружность ω1 в точке X и окружность ω2 в точке Y . Докажите,
что один из отрезков BX, CY и XY равен сумме двух других.

Решение. Поскольку окружности равны, то при симметрии, переводящей одну из них
в другую, касательная AB переходит в касательную AC. Отсюда следует, что AB = AC.

Предположим, что точка A лежит на отрезке XY , то есть прямая ℓ не проходит внутри
угла BAC. Поскольку прямая AB касается ω2, то ∠BAX = ∠ACY . Поскольку прямая
AC касается ω1, то ∠ABX = ∠CAY . Таким образом, треугольники ABX и CAY равны,
поэтому BX = AY и AX = CY . В этом случае XY = AX + AY = BX + CY .

Теперь разберем оставшийся случай. Пусть точка Y лежит на отрезке AX. Снова,
используя касание, получаем равенства углов ∠ABX = ∠Y AC и ∠BAX = ∠Y CA, откуда
также равны треугольники ABX и CAY . На этот раз XY = AX − AY = CY − BX,
поэтому CY = BX + XY , что и требовалось. Случай, когда точка X лежит на отрезке
AY разбирается аналогично.

(A) Разобран случай, когда точка A лежит на отрезке XY . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
(B) Разобран случай, когда точка A лежит на продолжении отрезка XY . . . . . . . . . 4 балла
(C) Разобран один из случаев, сказано о существовании второго случая. При этом

никак не указывается, что некоторые равенства будут выглядеть по-другому
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл за неразобранный случай

Продвижение (С) суммируется с баллами за разобранный случай (A) или (B).
11.3. Петя и Вася играют в игру. В начале игры на столе лежат 1000 куч, состоящих из 1,

2, 3, 4, . . . , 999, 1000 спичек соответственно. Ребята ходят по очереди, начинает Петя.
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Каждый из мальчиков своим ходом может взять любое ненулевое количество спичек из
кучи с наибольшим количеством спичек (ровно из одной из таких куч, если их несколько).
Выигрывает тот, кто заберёт последнюю спичку. Кто из мальчиков может играть так,
чтобы гарантированно выиграть?

Ответ: Петя.
Решение 1. Опишем стратегию, позволяющую Пете гарантированно забрать послед-

нюю спичку. Для этого он на каждом ходе будет делать так, чтобы количество куч, со-
держащих максимальное количество спичек, было чётным (такие позиции будем называть
правильными).

Докажем, что (1) перед каждым ходом Пети позиция будет неправильной, и (2) он все-
гда сможет сделать ход, добившись правильной позиции. На первом ходе Пете достаточно
взять 1 спичку (из кучи с 1000 спичками), добившись правильной позиции.

Далее, если перед ходом Васи позиция правильная, то после его хода хотя бы одна
из наибольших куч останется нетронутой, то есть наибольшее число спичек в куче не
изменится. При этом их количество уменьшится ровно на 1, то есть позиция перед ходом
Пети станет неправильной.

Пусть теперь перед ходом Пети позиция неправильная, причём в ней ровно a кучек,
содержащих максимальное количество спичек (число a нечётно). Если a > 1, то Петя,
например, забирает полностью одну из максимальных кучек, и позиция становится пра-
вильной (в ней a− 1 максимальная кучка).

Если же a = 1, то пусть k — число спичек в следующей за максимальной по величине
непустой кучке, и пусть кучек, содержащих k спичек, ровно b (если других непустых кучек
нет, то b = 0). Если число b чётно, то Петя просто заберёт наибольшую кучку (в частности,
если других кучек нет, то Петя заберёт последнюю спичку). Если же b нечётно, то Петя
забирает столько спичек, чтобы в кучке осталось k спичек, и таких кучек станет b+ 1; во
всех случаях позиция снова станет правильной.

Итак, Петя всегда сможет поддерживать описанные свойства — в частности, Вася ни-
когда не сможет забрать последнюю спичку (в правильной ситуации это невозможно). Так
как число спичек уменьшается, это рано или поздно сделает Петя и выиграет.

Решение 2. Заметим, что игра закончится не более чем за 10002 ходов. Тогда у одного
из мальчиков обязательно есть выигрышная стратегия. Предположим, что её нет у Пети;
тогда она есть у Васи.

Пусть Петя первым ходом возьмёт 1 спичку (из кучи с 1000 спичками), а в ответ Вася
(по своей стратегии) возьмёт некоторое количество n спичек из кучи c 999 спичками.
По нашему предположению, в получившейся позиции выигрывает Вася, то есть игрок,
ходящий вторым.

Но этой же позиции мог добиться Петя, взяв на первом ходе n + 1 спичку из кучи с
1000 спичками. Действуя по той же стратегии, он гарантированно выиграет. Полученное
противоречие означает, что у Васи нет выигрышной стратегии, а значит, она есть у Пети.

Комментарий. Метод, описанный во втором решении, называется передачей хода.
Критерии оценивания для решения 1.

(О) Только ответ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(1) Сформулировано понятие правильной позиции и заявлено, что Пете достаточно доби-

ваться правильной позиции на каждом ходе . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 балла
(X) Замечено, что при каждом ходе число наибольших куч уменьшается на 1, если оно было

больше 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(2В) Сформулировано и доказано, что при ходе Васи из правильной позиции получается

неправильная . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл
(3П) Сформулировано и доказано, что Петя может получить правильную позицию из непра-

вильной, если a > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 балл
Если в решении содержится стратегия для случая (3П), однако явно не указано,

что она работает только в случае a > 1, баллы по критерию (3П) не начисляются.
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(4П) Сформулировано и доказано, что Петя может получить правильную позицию, если a = 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла

Баллы за продвижения (1), (2В), (3П), (4П) суммируются. Баллы за (X) не сумми-
руются с баллами за (2В) и (3П), но суммируются с баллами за (1) и (4П).

Критерии оценивания для решения 2.
(Z) Не поясняется, почему хотя бы у одного из игроков есть выигрышная позиция или без

объяснения используется существование структуры выигрышных и проигрышных пози-
ций . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . баллы не снимаются

11.4. Две бесконечные последовательности a1, a2, . . . и b1, b2, . . . натуральных чисел таковы,
что при любых различных натуральных m и k число am−bk делится на m−k. Обязательно
ли an = bn при всех натуральных n?

Ответ: Обязательно.
Решение. Зафиксируем натуральное число n и покажем, что an = bn. Пусть M —

натуральное число, большее an и bn. Из условия задачи следует, что числа an − bn+M ,
an+2M −bn+M и an+2M −bn кратны M . Значит, число (an−bn+M )−(an+2M −bn+M )+
+ (an+2M − bn+M ) = an − bn тоже делится на M . Однако, поскольку an < M и bn < M ,
это возможно лишь в случае an = bn, что и требовалось.

(A) Доказано, что числа an и bn дают одинаковый остаток от деления на любое натуральное
число M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не менее 5 баллов.

11.5. Некоторые рёбра выпуклого многогранника удалось покрасить в красный цвет так, что в
каждую вершину входит ровно два красных ребра, причём эти ребра лежат в одной грани.
Кроме того, в каждой грани оказалось не более двух красных ребер. Сколько вершин
может быть в таком многограннике?

Ответ: Ответ: любое чётное число вершин, большее 2.
Решение. Поскольку из каждой вершины исходит ровно два красных ребра, то крас-

ные рёбра образуют несколько непересекающихся циклических маршрутов по вершинам
многогранника. Рассмотрим один такой цикл из красных рёбер, он делит поверхность
многогранника на две части, покрасим одну из таких частей в синий цвет, другую в зелё-
ный. Пусть A — одна из вершин циклического маршрута. Исходящие из неё красные рёб-
ра лежат в одной грани по условию задачи. Покрасим вершину A в тот цвет, в который
покрашена эта грань. Таким образом мы получим, что в циклическом маршруте синие
и зелёные вершины чередуются, поэтому вершин в нем чётное число. Следовательно, и
общее количество вершин в многограннике чётно.

Теперь приведём пример для чётного числа вершин. Для 4 вершин подойдет тетра-
эдр ABCD, в котором красным покрашены ребра AB,BC,CD,DA. Пусть n ⩾ 3. Рас-
смотрим правильную 2n-угольную призму A1A2 . . . A2nB1B2 . . . B2n и соответствующую
2n-вершинную антипризму, образованную вершинами Ai, где i = 1, 3, . . . , 2n− 1, и верши-
нами Bj , где j = 2, 4, . . . n. Под условие подойдёт покраска в красный цвет рёбер, по ко-
торым граничат «боковые» треугольные грани: A1B2, B2A3, . . . , B2nA1. Таким образом,
в каждой треугольной грани будет окрашено два ребра, а в двух n-угольных гранях не
будет красных рёбер.

(A) Верный ответ и пример для 4 вершин . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 балл
(A0) Только ответ или только пример для 4 вершин . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 баллов
(B) Пример для чётного числа вершин, большего либо равного 6 . . . . . . . . . . . . . . . . . .3 балла
(C) Доказательство, что количество вершин чётно . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 балла
(X) В ответе ошибочно указано, что подходят все чётные числа . . . . . баллы не снимаются

Продвижение (A) оценивается в 1 балл даже при наличии неточности (X). Баллы за
части (A), (B), (C) суммируются.


