ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025–2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

Задача 1. Вопросы 1-4

Электробус, движущийся по улице, начинает тормозить с постоянным ускорением, когда до ближайшей остановки остаётся проехать расстояние $S_0=300\,\mathrm{m}$. В этот момент его обгоняет автомобиль такси, движущийся равномерно со скоростью $v_\mathrm{T}=72\,\mathrm{km/v}$. Электробус прибыл на остановку спустя время $t=25\,\mathrm{c}$ после того, как мимо неё проследовало такси. Размерами транспортных средств и протяжённостью остановки можно пренебречь.

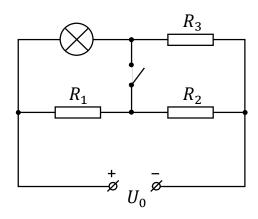
- 1. С какой скоростью v_9 двигался электробус непосредственно перед началом торможения? Дайте ответ в км/ч с округлением до целого числа. (2 балла)
- **2.** С каким по модулю ускорением a происходило торможение электробуса? Дайте ответ в m/c^2 с округлением до тысячных долей. (2 балла)
- **3.** Какая скорость v была у электробуса в момент времени, когда автомобиль такси проезжал мимо остановки? Дайте ответ в км/ч с округлением до целого числа. (2 балла)
- **4.** На какое расстояние *S* автомобиль такси обогнал электробус к моменту, когда машина такси проезжала мимо остановки? Дайте ответ в метрах с округлением до целого числа. *(2 балла)*

Матрица параметров к вариантам задачи 1

Вариант	S_0 , м	$v_{\scriptscriptstyle m T}$, км/ч	t, c
1	300	72	25
2	500	60	70
3	375	54	75
4	125	75	14
5	256	64	17,6

Задача 2. Вопросы 5-7

Три тела с теплоёмкостями $C_1 = 460 \, \text{Дж/°C}$, $C_2 = 140 \, \text{Дж/°C}$ и $C_3 = 400 \, \text{Дж/°C}$ имеют температуры $t_1 = 10 \, \text{°C}$, $t_2 = 40 \, \text{°C}$ и $t_3 = 24,5 \, \text{°C}$ соответственно. Первое тело приводят на некоторое время в тепловой контакт со вторым, а затем второе тело приводят в тепловой контакт с третьим. В результате температура третьего тела не изменилась, т.е. $t_3 = t_3 = 24,5 \, \text{°C}$. Теплообменом с другими телами и с окружающей средой можно пренебречь.


- **5.** Найдите конечную температуру t_2' второго тела. Дайте ответ в градусах Цельсия с округлением до десятых долей. (2 балла)
- **6.** Найдите конечную температуру t_1' первого тела. Дайте ответ в градусах Цельсия с округлением до десятых долей. *(3 балла)*
- 7. Какая температура t установится у каждого из трёх тел, если их на длительное время привести в тепловой контакт друг с другом? Дайте ответ в градусах Цельсия с округлением до десятых долей. (3 балла)

Матрица параметров к вариантам задачи 2

Вариант	<i>C</i> ₁ , Дж/°С	<i>C</i> ₂ ,Дж/°С	С₃,Дж/°С	t₁,°C	t₂,°C	t₃,°C	t ₃ , °C
1	460	140	400	10	40	24,5	24,5
2	2500	400	2100	15	90	5	5
3	820	80	970	11	49	31	31
4	3400	350	2350	52	92	72	72
5	370	470	225	32	95	85	85

Задача 3. Вопросы 8-12

В цепи, показанной на рисунке, лампочка накаливания горит одинаково ярко при замкнутом и разомкнутом положениях ключа. Напряжение источника $U_0 = 4,5$ В, сопротивления резисторов $R_1 = 10$ Ом, $R_2 = 20$ Ом, $R_3 = 30$ Ом.

- **8.** Найдите напряжение U на лампочке при замкнутом положении ключа. Дайте ответ в вольтах с округлением до десятых долей. (2 балла)
- **9.** Найдите напряжение U^* на лампочке при разомкнутом положении ключа. Дайте ответ в вольтах с округлением до десятых долей. *(1 балла)*
- **10.**Найдите силу тока I через лампочку при замкнутом положении ключа. Дайте ответ в миллиамперах с округлением до целого числа. (2 балла)
- **11.**Найдите силу тока I^* через лампочку при разомкнутом положении ключа. Дайте ответ в миллиамперах с округлением до целого числа. (1 балла)
- **12.**Найдите сопротивление *R* лампочки в «холодном» состоянии, если оно в 10 раз меньше её сопротивления во включённом состоянии при замкнутом положении ключа. Дайте ответ в омах с округлением до десятых долей. (2 балла)

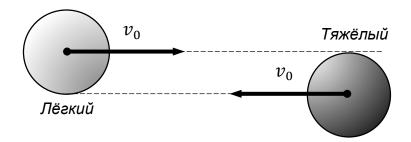
Матрица параметров к вариантам задачи 3

Вариант	U_0 , B	<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом	<i>R</i> ₃ , Ом
1	4,5	10	20	30
2	9	100	200	300
3	1,5	20	30	60
4	10	80	20	40
5	5	20	30	120

Задача 4. Вопросы 13-15

Автомобиль въезжает на прямолинейную полосу разгона со стартовой скоростью $v_0 = 36$ км/ч и разгоняется на этой полосе до скорости $v_1 = 108$ км/ч, финишируя. Известно, что при движении по полосе разгона модули скорости v(t) и ускорения a(t) автомобиля в любой момент времени t связаны соотношением $v(t) = \tau \cdot a(t)$, где $\tau = 10$ с.

- **13.** Найдите ускорение a автомобиля на старте. Дайте ответ в м/c^2 с округлением до десятых долей. (3 балла)
- **14.** Найдите рывок j автомобиля на финише. Дайте ответ в м/ c^3 с округлением до десятых долей. (4 балла)
- **15.** Найдите длину l полосы разгона. Дайте ответ в метрах с округлением до целого числа. *(3 балла)*


Примечание. Рывком в кинематике называется векторная физическая величина \vec{j} , равная изменению ускорения \vec{a} движения точки в единицу времени: $\vec{j} = \frac{\Delta \vec{a}}{\Delta t}$. Иными словами, **рывок** — это скорость изменения ускорения. В настоящей задаче требуется найти модули векторов \vec{j} и \vec{a} .

Матрица параметров к вариантам задачи 4

Вариант	v_0 , км/ч	v_1 , км/ч	τ, c
1	36	108	10
2	18	36	5
3	54	72	10
4	18	54	10
5	72	108	16

Задача 5. Вопросы 16-19

Два одинаковых по размеру, но разных по массе гладких шара движутся навстречу друг другу с одинаковыми постоянными скоростями $v_0 = 5 \text{ м/c}$ так, что прямая, по которой движется центр одного шара, касается другого шара (см. рис.). Шары испытывают абсолютно упругий нецентральный удар. Известно, что масса лёгкого шара намного меньше массы тяжёлого.

- **16.**Найдите скорость v_1 лёгкого шара до соударения в системе отсчёта тяжёлого шара. Дайте ответ в м/с с округлением до целого числа. (2 балла)
- **17.**Найдите скорость v_2 лёгкого шара после соударения в системе отсчёта тяжёлого шара. Дайте ответ в м/с с округлением до целого числа. (2 балла)
- **18.** Найдите скорость v_3 лёгкого шара после соударения в лабораторной системе отсчёта. Дайте ответ в м/с с округлением до целого числа. (6 баллов)
- **19.** На какой угол α повернётся вектор скорости лёгкого шара в результате соударения с тяжёлым в лабораторной системе отсчёта? Дайте ответ в градусах с округлением до целого числа. (6 баллов)

Матрица параметров к вариантам задачи 5

Вариант	v_0 , м/с
1	5
2	10
3	9
4	6
5	3

Максимальный балл за работу – 50.