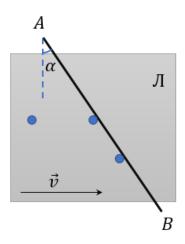
# ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025–2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

### Задача 1. Вопросы 1-4

При расширении  $\nu=1$  моль идеального одноатомного газа в процессе, при котором pVT= const (p- давление, V- объём, T- температура газа), им была совершена работа A=2,74 кДж. Начальная температура газа  $T_1=300$  К. Универсальная газовая постоянная  $R=8,31\frac{\text{Дж}}{\text{моль·К}}$ .


- **1.** Найдите конечную температуру газа  $T_2$ . Ответ дайте в кельвинах с точностью до целого числа. (З балла)
- **2.** Найдите изменение внутренней энергии газа  $\Delta U$  в процессе. Ответ дайте в килоджоулях с точностью до целого числа. (1 балл)
- **3.** Какое количество теплоты Q было подведено к газу в процессе? Ответ дайте в килоджоулях с точностью до сотых долей. (2 балла)
- **4.** Во сколько раз изменился объём газа при расширении в данном процессе? Ответ дайте с точностью до сотых долей. *(5 баллов)*

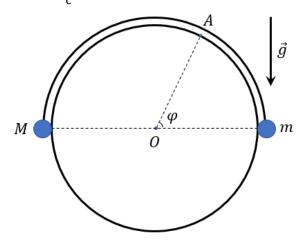
Матрица параметров к вариантам задачи 1

| Вариант | $T_1$ , K | А, кДж |
|---------|-----------|--------|
| 1       | 300       | 2,74   |
| 2       | 350       | 2,90   |
| 3       | 400       | 3,54   |
| 4       | 450       | 5,08   |
| 5       | 500       | 5,38   |

### Задача 2. Вопросы 5-6

Для перемещения готовых изделий с ленты Л конвейера, движущегося горизонтально со скоростью  $v=1,5\,\mathrm{m/c}$ , используется неподвижная горизонтальная направляющая перекладина AB, установленная чуть выше ленты и образующая угол  $\alpha$  с перпендикуляром к направлению скорости ленты (на рис. вид сверху). Коэффициент трения изделий о ленту конвейера равен  $\mu_1=0,40$ , а о направляющую перекладину —  $\mu_2=0,30$ . Считайте, что движение деталей носит поступательный характер, то есть они не вращаются при трении о перекладину.




- **5.** При каком минимальном угле  $\alpha_{\min}$  изделия будут соскальзывать с ленты конвейера? Ответ дайте в градусах с точностью до целого числа. *(4 балла)*
- **6.** Перекладину устанавливают под углом  $\alpha = 30^{\circ}$ . Считая перекладину достаточно длинной, а ленту достаточно широкой, найдите установившуюся скорость u движения изделий вдоль неё. Ответ дайте в см/с с точностью до целого числа. (7 баллов)

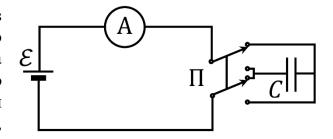
Матрица параметров к вариантам задачи 2

| Вариант | <i>v</i> ,м/с | $\mu_1$ | $\mu_2$ |
|---------|---------------|---------|---------|
| 1       | 1,5           | 0,40    | 0,30    |
| 2       | 1,9           | 0,60    | 0,45    |
| 3       | 1,2           | 0,80    | 0,20    |
| 4       | 1,3           | 0,50    | 0,40    |
| 5       | 1,4           | 0,30    | 0,10    |

# Задача 3. Вопросы 7-9

На гладкий горизонтально расположенный цилиндр радиусом R=1,3 см накинута лёгкая нерастяжимая нить, к концам которой прикреплены два маленьких шарика массами m и M (m < M). В начальный момент шарики находятся на одном уровне с осью цилиндра (см. рис.). Нить с шариками начинает соскальзывать с цилиндра из состояния покоя. Когда угол между горизонталью и направлением от оси цилиндра на лёгкий шарик стал равен  $\varphi=1,0$  рад, лёгкий шарик перестал давить на цилиндр. Ускорение свободного падения  $g=10\frac{M}{s^2}$ .




- **7.** Определите отношение масс шариков  $\frac{M}{m}$ . Ответ дайте с точностью до сотых долей. *(4 балла)*
- **8.** Какой угол  $\varphi'$  образует с горизонталью направление от оси цилиндра на лёгкий шарик в тот момент, когда сила давления лёгкого шарика на цилиндр максимальна? Ответ дайте в радианах с точностью до сотых долей. *(4 балла)*
- **9.** Какова скорость v' лёгкого шарика при прохождении им положения, в котором он действует на цилиндр с максимальной силой? Ответ дайте в см/с с точностью до целого числа. (2 балла)

Матрица параметров к вариантам задачи 3

| Вариант | <i>R</i> , см | arphi, рад |
|---------|---------------|------------|
| 1       | 1,3           | 1,0        |
| 2       | 1,42          | 1,4        |
| 3       | 4,43          | 1,15       |
| 4       | 2,74          | 1,35       |
| 5       | 4,66          | 0,66       |

# Задача 4. Вопросы 10-13

Электрическая цепь состоит источника пренебрежимо ЭДС c малым сопротивлением, конденсатора ёмкостью C = 300 мкФ, стрелочного сопротивлением амперметра c  $R_A = 5 \text{ Om}$ переключателя Π, способного быстро очень менять



полярность подключения конденсатора в цепи. Полярность меняется с частотой  $\nu=10$  Гц, при этом показания амперметра составляют I=100 мA, а стрелка прибора практически не дрожит. Считайте, что показания стрелочного амперметра определяются средней величиной силы тока в цепи.

- **10.** Какова ЭДС  $\mathcal{E}$  источника? Ответ дайте в вольтах с точностью до десятых долей. *(3 балла)*
- **11.** Какой заряд q проходит через источник за время между двумя последовательными переключениями полярности? Ответ дайте в милликулонах с точностью до десятых долей. (2 балла)
- **12.** Какую среднюю мощность P развивает при таком режиме работы источник ЭДС? Ответ дайте в ваттах с точностью до сотых долей. (З балла)
- **13.** Каковы были бы показания I' амперметра тепловой системы с таким же сопротивлением? Считайте, что показания амперметра тепловой системы определяются средней тепловой мощностью электрического тока, выделяющейся на сопротивлении амперметра. Ответ дайте в миллиамперах с точностью до целого числа. (4 балла)

|         | 1 , 1  | 1          | 1     |       |
|---------|--------|------------|-------|-------|
| Вариант | С, мкФ | $R_A$ , Ом | ν, Гц | I, mA |
| 1       | 300    | 5          | 10    | 100   |
| 2       | 400    | 8          | 12    | 120   |
| 3       | 550    | 8          | 10    | 250   |
| 4       | 400    | 10         | 12    | 360   |
| 5       | 200    | 2          | 15    | 120   |

Матрица параметров к вариантам задачи 4

#### Задача 5. Вопросы 14-15

Взаимодействие воды с её паром трудно описать аналитически, поскольку зависимость давления насыщенных паров воды от температуры обычно задаётся в виде таблицы или графика. В таком случае при расчётах используют интерполяционные или графические методы.

Зависимость давления насыщенного водяного пара от температуры

| t,°C | <i>р,</i> кПа | t,°C  | <i>р,</i> кПа |
|------|---------------|-------|---------------|
| 50,0 | 12,33         | 90,0  | 70,10         |
| 55,0 | 15,74         | 95,0  | 84,51         |
| 60,0 | 19,92         | 100,0 | 101,33        |
| 65,0 | 25,00         | 110,0 | 143,27        |
| 70,0 | 31,16         | 120,0 | 198,54        |
| 75,0 | 38,54         | 130,0 | 270,11        |
| 80,0 | 47,34         | 140,0 | 361,37        |
| 85,0 | 57,81         | 150,0 | 476,01        |

Вам могут понадобиться следующие данные:

- плотность жидкой воды  $\rho = 1.0 \cdot 10^3 \frac{\text{кг}}{\text{м}^3}$ ;
- нормальное атмосферное давление  $p_0 = 1.01 \cdot 10^5$  Па;
- абсолютный нуль температуры  $t_0 = -273,15$ °C;
- ускорение свободного падения  $g = 9.81 \frac{M}{c^2}$ .
- **14.** Считая, что на каждом малом интервале температур давление насыщенного водяного пара зависит от температуры линейно, определите температуру кипения воды при внешнем давлении  $p = 1,17 \cdot 10^5$  Па. Ответ дайте в °C с точностью до десятых долей. *(3 балла)*
- **15.** В вертикальной тонкой трубке, закрытой сверху и погружённой открытым концом в сосуд с водой, находится в равновесии столб воды, который доходит до верхнего края трубы. Над свободной поверхностью жидкости в сосуде находится воздух при нормальном атмосферном давлении. Считая, что на каждом малом интервале температур давление насыщенного водяного пара зависит от температуры линейно, а капиллярные эффекты пренебрежимо малы, определите, какова может быть максимальная высота этого столба, если температура воды t = 83°C. Ответ дайте в метрах с точностью до десятых долей. (З балла)

Матрица параметров к вариантам задачи 5

| Вариант | <i>p</i> , 10 <sup>5</sup> Па | t, °C |
|---------|-------------------------------|-------|
| 1       | 1,17                          | 83    |
| 2       | 0,50                          | 68    |
| 3       | 0,68                          | 77    |
| 4       | 1,30                          | 72    |
| 5       | 1,10                          | 87    |

Максимальный балл за работу – 50.