ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025–2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 50.

Задача 1. Вопросы 1-4

Электробус, движущийся по улице, начинает тормозить с постоянным ускорением, когда до ближайшей остановки остаётся проехать расстояние $S_0=300\,\mathrm{m}$. В этот момент его обгоняет автомобиль такси, движущийся равномерно со скоростью $v_\mathrm{T}=72\,\mathrm{km/v}$. Электробус прибыл на остановку спустя время $t=25\,\mathrm{c}$ после того, как мимо неё проследовало такси. Размерами транспортных средств и протяжённостью остановки можно пренебречь.

- 1. С какой скоростью v_9 двигался электробус непосредственно перед началом торможения? Дайте ответ в км/ч с округлением до целого числа. (2 балла)
- **2.** С каким по модулю ускорением a происходило торможение электробуса? Дайте ответ в m/c^2 с округлением до тысячных долей. (2 балла)
- **3.** Какая скорость v была у электробуса в момент времени, когда автомобиль такси проезжал мимо остановки? Дайте ответ в км/ч с округлением до целого числа. (2 балла)
- **4.** На какое расстояние S автомобиль такси обогнал электробус к моменту, когда машина такси проезжала мимо остановки? Дайте ответ в метрах с округлением до целого числа. (2 балла)

Решение:

1, 2. Время движения такси от места обгона электробуса до остановки:

$$t_{\mathrm{T}} = \frac{S_0}{v_{\mathrm{T}}}$$

Время движения электробуса от места обгона до остановки: $t_9 = t + t_{\rm T}$. Скорость электробуса непосредственно перед началом торможения: $v_9 = at_9$. Путь электробуса от места обгона до остановки:

$$S_0 = v_9 t_9 - \frac{a t_9^2}{2} = \frac{a t_9^2}{2}.$$

Отсюда

$$a = \frac{2S_0}{t_9^2} = \frac{2S_0}{\left(\frac{S_0}{v_T} + t\right)^2} = 0.375 \frac{M}{c^2}$$

$$v_{9} = at_{9} = \frac{2S_{0}}{\frac{S_{0}}{v_{T}} + t} = 54$$
 км/ч.

3. Скорость v, которая была у электробуса, в момент времени, когда машина такси проезжала мимо остановки,

$$v = v_{3} - at_{\text{T}} = v_{3} - a\frac{S_{0}}{v_{\text{T}}} = \frac{2S_{0}t}{\left(\frac{S_{0}}{v_{\text{T}}} + t\right)^{2}} \approx 34 \text{ км/ч}.$$

4. Расстояние S, на которое машина такси обогнала электробус к моменту, когда машина такси проезжала мимо остановки, можно представить как путь, который осталось проехать электробусу до остановки за время t:

$$S = vt - \frac{at^2}{2} = \frac{S_0 t^2}{\left(\frac{S_0}{v_T} + t\right)^2} \approx 117 \text{ M}.$$

Матрица параметров и ответов к вариантам задачи 1

Вариант	S_0 , M	$v_{_{ m T}}$, км/ч	t, c	Ответ на вопрос 1	Ответ на вопрос 2	Ответ на вопрос 3	Ответ на вопрос 4
1	300	72	25	54	0,375	34	117
2	500	60	70	36	0,100	25	245
3	375	54	75	27	0,075	20	211
4	125	75	14	45	0,625	32	61
5	256	64	17,6	58	0,500	32	77

Максимум за задачу 8 баллов.

Задача 2. Вопросы 5-7

Три тела с теплоёмкостями $C_1=460~\rm{Д}$ ж/°С, $C_2=140~\rm{Д}$ ж/°С и $C_3=400~\rm{Д}$ ж/°С имеют температуры $t_1=10~\rm{^\circ}$ С, $t_2=40~\rm{^\circ}$ С и $t_3=24,5~\rm{^\circ}$ С соответственно. Первое тело приводят на некоторое время в тепловой контакт со вторым, а затем второе тело приводят в тепловой контакт с третьим. В результате температура третьего тела не изменилась, т.е. $t_3=t_3=24,5~\rm{^\circ}$ С. Теплообменом с другими телами и с окружающей средой можно пренебречь.

- **5.** Найдите конечную температуру t_2' второго тела. Дайте ответ в градусах Цельсия с округлением до десятых долей. (2 балла)
- **6.** Найдите конечную температуру t_1' первого тела. Дайте ответ в градусах Цельсия с округлением до десятых долей. *(3 балла)*
- 7. Какая температура t установится у каждого из трёх тел, если их на длительное время привести в тепловой контакт друг с другом? Дайте ответ в градусах Цельсия с округлением до десятых долей. (3 балла)

Всероссийская олимпиада школьников. Физика. 2025–2026 уч. г. Муниципальный этап. 9 класс. Ответы и критерии

Решение:

- 5. Так как температура третьего тела не изменилась, то $t_2{}'=t_3=24,5\,^{\circ}\mathrm{C}.$
- 6. Найдём ${t_1}^{\prime}$ из уравнения теплового баланса:

$$\begin{cases}
C_1(t_1' - t_1) + C_2(t_2' - t_2) = 0 \\
t_2' = t_3
\end{cases}$$

Получим

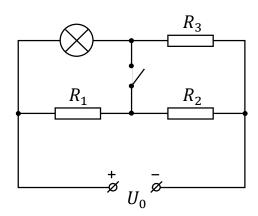
$$t_1' = t_1 + \frac{C_2}{C_1}(t_2 - t_3) \approx 14,7^{\circ}\text{C}$$

7. Найдём t из уравнения теплового баланса:

$$C_1(t - t_1) + C_2(t - t_2) + C_3(t - t_3) = 0,$$

$$t = \frac{C_1t_1 + C_2t_2 + C_3t_3}{C_1 + C_2 + C_3} = 20,0 \text{ °C}.$$

Матрица параметров и ответов к вариантам задачи 2


Вариант	<i>С</i> ₁, Дж/°С	С₂,Дж/°С	<i>С</i> ₃,Дж/°С	t₁,°C	t₂,°C	t₃,°C	t ₃ ,°C
1	460	140	400	10	40	24,5	24,5
Ответы	вопрос 5	вопрос 6	вопрос 7				
	24,5	14,7	20,0				
2	2500	400	2100	15	90	5	5
Ответы	вопрос 5	вопрос 6	вопрос 7				
	5,0	28,6	16,8				
3	820	80	970	11	49	31	31
Ответы	вопрос 5	вопрос 6	вопрос 7				
	31,0	12,8	23,0				
4	3400	350	2350	52	92	72	72
Ответы	вопрос 5	вопрос 6	вопрос 7				
	72,0	54,1	62,0				
5	370	470	225	32	95	85	85
Ответы	вопрос 5	вопрос 6	вопрос 7				
	85,0	44,7	71,0				

Максимум за задачу 8 баллов*.

^{*}Задача автоматически засчитана всем участникам из-за некорректности численных данных варианта N = 2.

Задача 3. Вопросы 8-12

В цепи, показанной на рисунке, лампочка накаливания горит одинаково ярко при замкнутом и разомкнутом положениях ключа. Напряжение источника $U_0 = 4,5$ В, сопротивления резисторов $R_1 = 10$ Ом, $R_2 = 20$ Ом, $R_3 = 30$ Ом.

- **8.** Найдите напряжение U на лампочке при замкнутом положении ключа. Дайте ответ в вольтах с округлением до десятых долей. (2 балла)
- **9.** Найдите напряжение U^* на лампочке при разомкнутом положении ключа. Дайте ответ в вольтах с округлением до десятых долей. (1 балла)
- **10.**Найдите силу тока I через лампочку при замкнутом положении ключа. Дайте ответ в миллиамперах с округлением до целого числа. (2 балла)
- **11.**Найдите силу тока I^* через лампочку при разомкнутом положении ключа. Дайте ответ в миллиамперах с округлением до целого числа. (1 балла)
- **12.** Найдите сопротивление R лампочки в «холодном» состоянии, если оно в 10 раз меньше её сопротивления во включённом состоянии при замкнутом положении ключа. Дайте ответ в омах с округлением до десятых долей. (2 балла)

Решение:

Манипуляции с ключом не приводят к изменению тока и напряжения лампочке, а, следовательно, величин силы напряжения на резисторах. Ток через ключ не течёт.

8-9. Напряжение на лампочке $U = U^*$ будет равно напряжению на резисторе R_1 :

$$U = I_1 \cdot R_1 = \frac{U_0}{R_1 + R_2} \cdot R_1 = 1,5 \text{ B},$$

 I_1 – сила тока, протекающего через резистор R_1 .

10-11. Ток через лампочку
$$I=I^*$$
 равен току через резистор R_3 :
$$I=\frac{I_1\cdot R_2}{R_3}=\frac{U_0}{R_1+R_2}\cdot\frac{R_2}{R_3}=100~\text{мA}$$

12. Сопротивление лампочки при протекании через неё тока *I*:

$$R^* = \frac{U}{I} = \frac{R_1 R_3}{R_2},$$

 I_2 — сила тока, протекающего через резистор R_2 . В «холодном» состоянии сопротивление лампочки: $R=\frac{1}{10}\cdot R^*=\frac{1}{10}\cdot \frac{R_1\cdot R_3}{R_2}=1,5$ Ом.

Матрица параметров и ответов к вариантам задачи 3

Вариант	U_0 , B	<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом	<i>R</i> ₃ , Ом	
1	4,5	10	20	30	
Ответы	вопрос 8	вопрос 9	вопрос 10	вопрос 11	вопрос 12
	1,5	1,5	100	100	1,5
2	9	100	200	300	
Ответы	вопрос 8	вопрос 9	вопрос 10	вопрос 11	вопрос 12
	3,0	3,0	20	20	15,0
3	1,5	20	30	60	
Ответы	вопрос 8	вопрос 9	вопрос 10	вопрос 11	вопрос 12
	0,6	0,6	15	15	4,0
4	10	80	20	40	
Ответы	вопрос 8	вопрос 9	вопрос 10	вопрос 11	вопрос 12
	8,0	8,0	50	50	16,0
5	5	20	30	120	
Ответы	вопрос 8	вопрос 9	вопрос 10	вопрос 11	вопрос 12
	2,0	2,0	25	25	8,0

Максимум за задачу 8 баллов.

Задача 4. Вопросы 13-15

Автомобиль въезжает на прямолинейную полосу разгона со стартовой скоростью $v_0 = 36$ км/ч и разгоняется на этой полосе до скорости $v_1 = 108$ км/ч, финишируя. Известно, что при движении по полосе разгона модули скорости v(t) и ускорения a(t) автомобиля в любой момент времени t связаны соотношением $v(t) = \tau \cdot a(t)$, где $\tau = 10$ с.

Всероссийская олимпиада школьников. Физика. 2025–2026 уч. г. Муниципальный этап. 9 класс. Ответы и критерии

- **13.** Найдите ускорение a автомобиля на старте. Дайте ответ в м/с² с округлением до десятых долей. (З балла)
- **14.** Найдите рывок j автомобиля на финише. Дайте ответ в м/ c^3 с округлением до десятых долей. (4 балла)
- **15.** Найдите длину l полосы разгона. Дайте ответ в метрах с округлением до целого числа. (З балла)

Примечание. Рывком в кинематике называется векторная физическая величина \vec{j} , равная изменению ускорения \vec{a} движения точки в единицу времени: $\vec{j} = \frac{\Delta \vec{a}}{\Delta t}$. Иными словами, **рывок** — это скорость изменения ускорения. В настоящей задаче требуется найти модули векторов \vec{j} и \vec{a} .

Решение:

13. По условию $v(t) = \tau \cdot a(t)$. На старте:

$$a = \frac{v_0}{\tau} = 1,0 \text{ m/c}^2.$$

14. Из уравнения v(t) получим

$$\Delta v = \tau \cdot \Delta a(t)$$

$$\frac{\Delta v}{\Delta t} = \tau \cdot \frac{\Delta a}{\Delta t}$$

$$a(t) = \tau \cdot j(t)$$

$$j = \frac{a_1}{\tau} = \frac{v_1}{\tau^2} = 0.3 \text{ m/c}^3$$

15. Запишем уравнение v(t) следующим образом:

$$\frac{\Delta x}{\Delta t} = \tau \cdot \frac{\Delta v}{\Delta t}.$$

Сокращая на Δt и суммируя, получим

$$l = (v_1 - v_0)\tau = 200$$
 m.

Матрица параметров и ответов к вариантам задачи 4

Вариант	v_0 , км/ч	v_1 , км/ч	τ, c	Ответ на вопрос 13	Ответ на вопрос 14	Ответ на вопрос 15
1	36	108	10	1,0	0,3	200
2	18	36	5	1,0	0,4	25
3	54	72	10	1,5	0,2	50
4	18	54	10	0,5	0,2	100
5	72	108	16	1,3	0,1	160

Максимум за задачу 10 баллов.

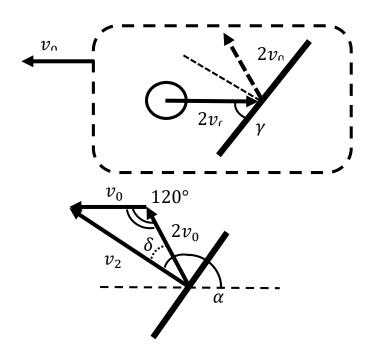
Задача 5. Вопросы 16-19

Два одинаковых по размеру, но разных по массе гладких шара движутся навстречу друг другу с одинаковыми постоянными скоростями $v_0 = 5 \text{ м/c}$ так, что прямая, по которой движется центр одного шара, касается другого шара (см. рис.). Шары испытывают абсолютно упругий нецентральный удар. Известно, что масса лёгкого шара намного меньше массы тяжёлого.

- **16.**Найдите скорость v_1 лёгкого шара до соударения в системе отсчёта тяжёлого шара. Дайте ответ в м/с с округлением до целого числа. (2 балла)
- **17.**Найдите скорость v_2 лёгкого шара после соударения в системе отсчёта тяжёлого шара. Дайте ответ в м/с с округлением до целого числа. (2 балла)
- **18.** Найдите скорость v_3 лёгкого шара после соударения в лабораторной системе отсчёта. Дайте ответ в м/с с округлением до целого числа. (6 баллов)
- **19.** На какой угол α повернётся вектор скорости лёгкого шара в результате соударения с тяжёлым в лабораторной системе отсчёта? Дайте ответ в градусах с округлением до целого числа. (6 баллов)

Решение:

16. Скорость v_1 лёгкого шара в системе отсчёта тяжёлого шара равна сумме скоростей шаров:


$$v_1 = 2v_0 = 10 \text{ m/c}$$

17. Скорость v_2 лёгкого шара в системе отсчёта тяжёлого до и после соударения изменит направление, но не изменится по модулю:

$$v_2 = v_1 = 10 \text{ m/c}$$

18. Удар лёгкого шара о тяжёлый равносилен удару о движущуюся плоскость, наклонённую под углом $\gamma = 60^{\circ}$ относительно вектора начальной скорости. Конечная скорость находится из закона сложения скоростей. Для этого рассмотрим удар в системе отсчёта, связанной с тяжёлым шариком.

Всероссийская олимпиада школьников. Физика. 2025–2026 уч. г. Муниципальный этап. 9 класс. Ответы и критерии

По теореме косинусов:

$$v_3^2=v_0^2+(2v_0)^2-2v_0\cdot 2v_0\cdot \cos 120^\circ=7v_0^2$$

$$v_3=\sqrt{7}v_0\approx 13~\text{м/c}$$
 19. Пусть δ – угол между векторами v_3 и $2v_0$. Тогда

$$\alpha = 120^{\circ} + \delta,$$

$$\frac{v_0}{\sin \delta} = \frac{v_3}{\sin 120^{\circ}},$$

$$\delta = \arcsin \sqrt{\frac{3}{28}} \approx 19^{\circ},$$

$$\alpha \approx 139^{\circ}.$$

Матрица параметров и ответов к вариантам задачи 5

Вариант	v ₀ ,м/с	Ответ на вопрос 16	Ответ на вопрос 17	Ответ на вопрос 18	Ответ на вопрос 19
1	5	10	10	13	139
2	10	20	20	26	139
3	9	18	18	24	139
4	6	12	12	16	139
5	3	6	6	8	139

Максимум за задачу 16 баллов.

Максимальный балл за работу – 50.