ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 7 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 40.

Задача 1. Вопросы 1-3

Пирамида Хеопса — самая большая из египетских пирамид. Средний размер наблюдаемых каменных блоков черновой кладки — 3,3 зереца в глубину и ширину, 2 зереца в высоту. Конструкция пирамиды такая, что блоки уложены со сдвигом на половину блока по отношению к ряду, лежащему ниже. Длина сторон основания пирамиды — около 440 королевских локтей. Известно, что 1 королевский локоть равен 1,5 зереца, а 1 зерец равен 0,35 м.

Найдите количество блоков в основании пирамиды. Ответ дайте в тысячах штук с точностью до целого числа. (3 балла)

Рассчитайте высоту пирамиды. Ответ дайте в метрах с округлением до целого числа. *(3 балла)*

Мальчик Дима решил собрать модель пирамиды Хеопса из пластикового конструктора. Размер одной детали $2 \text{ см} \times 2 \text{ см} \times 0.8 \text{ см}$. Поняв, что дома ограниченное количество деталей, он сделал основание со стороной в 10 деталей.

Сколько деталей для строительства ему потребовалось? Дайте ответ в виде целого числа. (4 балла)

Решение:

1. Длина стороны основания 440 королевских локтей. Известно, что 1 королевский локоть = 1,5 зереца, следовательно, сторона пирамиды равна $440 \times 1,5 = 660$ зереца. Ширина блока составляет 3,3 зереца. Тогда количество блоков в одном ряду основания:

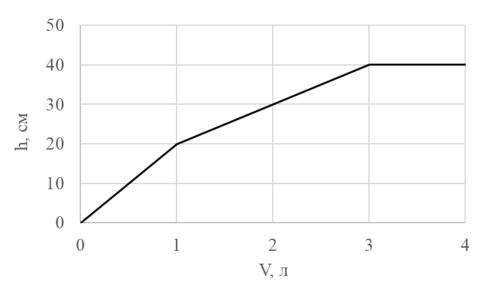
$$\frac{660}{3.3} = 200.$$

Общее количество блоков в основании: $200 \times 200 = 40~000$ блоков = =40~тыс. блоков.

2. Каждый следующий ряд уменьшается на 1 блок в длину и ширину (из-за сдвига на полблока с каждой стороны). Тогда высота пирамиды составляет 200 блоков. Высота одного блока равна 2 зереца, или 0,7 м. Получаем, что высота пирамиды:

$$200 \times 0.7 \text{ M} = 140 \text{ M}.$$

3. Количество деталей в первом ряду $10 \times 10 = 100$, во втором $9 \times 9 = 81$ и т.д. Общее количество деталей 385.


Матрица параметров и ответов к вариантам задачи 1

Вариант	Длина	Основание	Ответ на	Ответ на	Ответ на
	стороны,	из деталей,	вопрос 1	вопрос 2	вопрос 3
	королевские	ШТ			
	локти				
1	440	10	40	140	385
2	484	8	48	154	204
3	429	12	38	136-137	650
4	462	11	44	147	506
5	451	9	42	143-144	285

Максимум за задачу 10 баллов.

Задача 2. Вопросы 4-7

В цилиндрическом сосуде находится песок массой m=3 кг. Площадь основания сосуда $S=100~{\rm cm}^2$. Сосуд медленно наполнили водой. Зависимость высоты уровня воды h в сосуде от налитого объёма V представлена на рисунке. Плотность воды $1~{\rm r/cm}^3$.

Найдите насыпную плотность песка. Ответ дайте в г/см³ с округлением до десятых долей. *(3 балла)*

Найдите плотность песчинок. Ответ дайте в $\Gamma/\text{см}^3$ с округлением до десятых долей. (3 балла)

Найдите среднюю плотность содержимого заполненного сосуда. Ответ дайте в $\Gamma/\text{см}^3$ с округлением до десятых долей. (2 балла)

На сколько опустится уровень воды в заполненном сосуде, если убрать из него весь песок? Ответ дайте в см с округлением до десятых долей. (2 балла)

Решение:

4. Из условия задачи известно, что масса песка m=3 кг. Объём песка можно вычислить, зная площадь основания сосуда и высоту песка. Высоту песка найдём из графика. Видно, что на высоте 20 см наклон графика меняется, — это означает, что вода полностью покрыла песок. Объём, занимаемый песком, $V_{\Pi}=20\times100=2000$ см³. Найдём насыпную плотность песка:

$$\rho_{\rm H} = \frac{m}{V_{\rm II}} = \frac{3000 \, \text{r}}{2000 \, \text{cm}^3} = 1,5 \, \frac{\text{r}}{\text{cm}^3}.$$

5. Плотность песчинок $\rho_{\rm n}$ определяется как отношение массы песка к объёму песчинок. Для её определения нужно найти истинный объём песка без учёта промежутков между песчинками. Объём воды, который покрыл весь песок, составляет 1 л или $1000~{\rm cm}^3$. Тогда объём песчинок:

$$V_{\rm M} = 2000 - 1000 = 1000 \,{\rm cm}^3$$
.

Получаем, что

$$\rho_{\Pi} = \frac{m}{V_{\text{M}}} = \frac{3000 \,\text{r}}{1000 \,\text{cm}^3} = 3.0 \,\frac{\text{r}}{\text{cm}^3}.$$

6. По графику определяем, что уровень перестал меняться при отметке 40 см. Это и есть высота сосуда. Тогда объём сосуда $V_{\rm c} = 40 \times 100 = 4000 \, {\rm cm}^3$. К этому моменту в сосуде находится 3 кг воды и 3 кг песка. Тогда средняя плотность содержимого:

$$\rho_{\rm cp} = \frac{2m}{V_c} = \frac{6000 \, \text{r}}{4000 \, \text{cm}^3} = 1,5 \, \frac{\text{r}}{\text{cm}^3}.$$

7. Зная истинный объём песка, можно найти изменение уровня:

$$h = \frac{V_{\text{H}}}{S} = \frac{1000 \text{ cm}^3}{100 \text{ cm}^2} = 10,0 \text{ cm}.$$

Матрица параметров и ответов к вариантам задачи 2

Вариант	т, кг	<i>S</i> , см ²	Ответ на вопрос 4	Ответ на вопрос 5	Ответ на вопрос 6	Ответ на вопрос 7
1	3	100	1,5	3,0	1,5	10,0
2	3,8	120	1,6	2,7	1,4	11,7
3	2,8	95	1,6	3,1	1,5	9,5
4	3,2	115	1,4	2,5	2,7	11,3
5	3,6	105	1,7	3,3	1,6	10,5

Максимум за задачу 10 баллов*.

*Задача автоматически засчитана всем участникам, так как угловой коэффициент графика не соответствует площадям поперечного сечения сосуда, указанным в 2-5 вариантах.

Задача 3. Вопросы 8-10

Из пункта A в пункт B сплавляют по реке плоты, отправляя их через равные промежутки времени. Скорости всех плотов относительно берега реки постоянны и равны скорости течения реки. Пешеход, идущий из A в B по берегу реки, прошёл треть пути от A до B к моменту отплытия первого плота. Дойдя до B, пешеход сразу отправился в A и встретил первый плот, пройдя четверть пути от B до A, а последний плот он встретил, не доходя до A одну пятую часть расстояния между A и B. Скорость пешехода постоянна и равна v = 5.5 км/ч, участок реки от A до B — прямолинейный.

- **8.** Найдите скорость течения реки. Ответ дайте в км/ч с точностью до десятых долей. *(3 балла)*
- **9.** Найдите расстояние от пункта A до пункта B, если от встречи пешехода с первым плотом до встречи его с последним плотом прошло t = 59,4 мин. Ответ дайте в км с точностью до десятых долей. (З балла)
- **10.** Сколько плотов отправлено из A в B, если их отправляли с интервалом времени $\tau = 12$ мин? Дайте ответ в виде целого числа. (4 балла)

Решение:

Обозначим L — расстояние между пунктами A и B, u — скорость течения реки. Путь, пройденный пешеходом до встречи с первым плотом: $\frac{2}{3}L + \frac{1}{4}L = \frac{11}{12}L$, а время движения $t_1 = \frac{11L}{12v}$. За это же время плот проплыл расстояние $\frac{3}{4}L$. Тогда скорость реки:

Между встречами с пл ϕ ними-в ϕ них ϕ ли ϕ оних ϕ них ϕ ни

По условию задачи время движения t=59,4 мин. Тогда

L=vt, отсюда L=2011vt=20·5,511·59,460км=9,9 км.

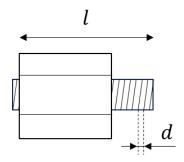
Найдём время $t_1=\frac{11L}{12v}=1,65$ ч = 99 мин. Последний плот до встречи с пешеходом плыл $t_2=\frac{L}{5u}=26,4$ мин. Получается, что после отплытия первого плота прошло времени $T=t_1+t-t_2=99+59,4-26,4=132$ мин. За это время отплыло N плотов.

$$N = \frac{T}{\tau} = \frac{132}{12} = 11$$

С учётом первого плота отплыло всего 12 плотов.

Матрица параметров и ответов к вариантам задачи 3

Вариант	<i>v</i> , км/ч	<i>t</i> , мин	τ, мин	Ответ на	Ответ на	Ответ на
				вопрос 8	вопрос 9	вопрос 10


Всероссийская олимпиада школьников. Физика. 2025–2026 уч. г. Муниципальный этап. 7 класс. Ответы и критерии

1	5,5		2			
2		54	10			13
3		63	14			11
4		45	10		9,0	11
5		36	10	6,3		9

Максимум за задачу 10 баллов.

Задача 4. Вопросы 11-13

Гайковёрт развивает скорость вращения n=600 оборотов в минуту. Гайка крепления колеса при этом имеет шаг резьбы d=2 мм. Глубина посадки гайки составляет l=3 см.

- **11**. Рассчитайте, за какое время гайковёрт откручивает гайку, считая скорость вращения постоянной. Ответ дайте в секундах с точностью до десятых долей. *(3 балла)*
- 12. Рассчитайте, за какое время гайковёрт открутит гайку, если на то, чтобы полностью раскрутиться, у гайковёрта уходит $\tau = 1$ с, а скорость вращения возрастает пропорционально времени. Ответ дайте в секундах с точностью до десятых долей. (4 балла)
- **13**. Какую максимальную скорость вдоль оси резьбы при этом приобретает гайка? Ответ дайте в мм/с с округлением до целого числа. *(3 балла)*

Всероссийская олимпиада школьников. Физика. 2025–2026 уч. г. Муниципальный этап. 7 класс. Ответы и критерии

Решение:

Рассчитаем, какое количество оборотов должна сделать гайка, чтобы полностью сойти с резьбы:

Рассчитаем время, необходимое для этого.

Видно, что расчётное время пр**Мыниат** ромя разгона гайковёрта. Значит, за время откручивания гайки он успеет раскрутиться полностью. За время разгона гайковёрта его средняя скорость вращения будет в два раза меньше максимальной, тогда в этот промежуток времени гайка совершит

Оставшееся время вращение будет происходить с постоянной скоростью:

$$t1=N-N1n=1 c$$
.

Итого общее время вращения в этом случае составит

$$t' = \tau + t1 = 2 c$$
.

Максимальная скорость движения гайки будет достигаться при максимальной скорости вращения. К этому моменту гайка проходит путь N1=10 мм. Оставшийся путь h=l-dN1. Время одного оборота с одной стороны можно рассчитать через скорость вращения, а с другой — через скорость гайки вдоль оси резьбы:

$$hv=1n$$
.

Тогда скорость движения гайки составит

= Матрица параметров и отпертов к вариантам задачи 4

Вариант	<i>п,</i> об./ н	<i>d</i> , мм	l, см	Ответ на вопрос 11	Ответ на вопрос 12	
1	600	2	3	1,5	2,0	20
2	720	3	4	1,1	1,6	36
3	480	3	3	1,3	1,8	24
4	480	2	4	2,5	3,0	16
5	600	2	4	2,0	2,5	20

Максимум за задачу 10 баллов.

Максимальный балл за работу – 40.