# ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

# ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 50.

# Задача 1. Вопросы 1-4

При расширении  $\nu=1$  моль идеального одноатомного газа в процессе, при котором pVT= const (p- давление, V- объём, T- температура газа), им была совершена работа A=2,74 кДж. Начальная температура газа  $T_1=300$  К. Универсальная газовая постоянная  $R=8,31\frac{\text{Дж}}{\text{моль·К}}$ .

- **1.** Найдите конечную температуру газа  $T_2$ . Ответ дайте в кельвинах с точностью до целого числа. (З балла)
- **2.** Найдите изменение внутренней энергии газа  $\Delta U$  в процессе. Ответ дайте в килоджоулях с точностью до целого числа. (1 балл)
- **3.** Какое количество теплоты Q было подведено к газу в процессе? Ответ дайте в килоджоулях с точностью до сотых долей. (2 балла)
- **4.** Во сколько раз изменился объём газа при расширении в данном процессе? Ответ дайте с точностью до сотых долей. *(5 баллов)*

# Решение:

1. При помощи уравнения состояния идеального газа перепишем уравнение процесса:

$$\begin{cases} pVT = \text{const} \\ pV = \nu RT \end{cases} \rightarrow \nu RT^2 = \text{const} \rightarrow T = \text{const}.$$

Видим, что описанный в условии процесс является изотермическим, тогда конечная температура газа равна  $T_2 = T_1 = 300 \text{ K}$ .

- 2. Изменение внутренней энергии в изотермическом процессе равно  $\Delta U = 0$ .
- 3. В соответствии с первым законом термодинамики,

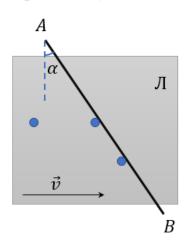
$$Q = \Delta U + A = A = 2,74$$
 кДж.

4. Рассмотрим работу идеального газа в изотермическом процессе:

$$A = \int_{V_1}^{V_2} p(V) dV = \nu RT \ln \frac{V_2}{V_1}.$$

Отсюда получаем отношение объёмов:

$$\frac{V_2}{V_1} = e^{A/\nu RT} \approx 3,00.$$

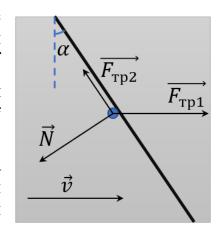

Матрица параметров и ответов к вариантам задачи 1

| Вариант | $T_1$ , K | А, кДж | Ответ на вопрос 1 | Ответ на вопрос 2 | Ответ на вопрос 3 | Ответ на вопрос 4 |
|---------|-----------|--------|-------------------|-------------------|-------------------|-------------------|
| 1       | 300       | 2,74   | 300               | 0                 | 2,74              | 3,00              |
| 2       | 350       | 2,90   | 350               | 0                 | 2,90              | 2,71              |
| 3       | 400       | 3,54   | 400               | 0                 | 3,54              | 2,90              |
| 4       | 450       | 5,08   | 450               | 0                 | 5,08              | 3,89              |
| 5       | 500       | 5,38   | 500               | 0                 | 5,38              | 3,65              |

Максимум за задачу 11 баллов.

# Задача 2. Вопросы 5-6

Для перемещения готовых изделий с ленты Л конвейера, движущегося горизонтально со скоростью  $v=1.5\,\mathrm{m/c}$ , используется неподвижная горизонтальная направляющая перекладина AB, установленная чуть выше ленты и образующая угол  $\alpha$  с перпендикуляром к направлению скорости ленты (на рис. вид сверху). Коэффициент трения изделий о ленту конвейера равен  $\mu_1=0.40$ , а о направляющую перекладину —  $\mu_2=0.30$ . Считайте, что движение деталей носит поступательный характер, то есть они не вращаются при трении о перекладину.




- **5.** При каком минимальном угле  $\alpha_{\min}$  изделия будут соскальзывать с ленты конвейера? Ответ дайте в градусах с точностью до целого числа. *(4 балла)*
- **6.** Перекладину устанавливают под углом  $\alpha = 30^{\circ}$ . Считая перекладину достаточно длинной, а ленту достаточно широкой, найдите установившуюся скорость u движения изделий вдоль неё. Ответ дайте в см/с с точностью до целого числа. (7 баллов)

## Решение:

5. После установления контакта детали направляющей на горизонтальной деталь плоскости будут действовать две силы трения:  $\overrightarrow{F_{\text{тр1}}}$ (со стороны ленты конвейера) и  $\overrightarrow{F_{\text{rp2}}}$  (со стороны реакции направляющей), также сила a со стороны направляющей.

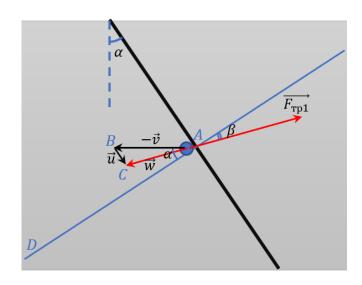
Для снятия (соскальзывания) детали с конвейера необходимо, чтобы проекция силы трения  $F_{\rm rp1} = \mu_1 mg$  на направляющую была больше силы трения  $F_{\rm rp2} = \mu_2 N$  о направляющую (рис.).



Рассмотрим переходный случай — момент начала движения детали вдоль направляющей:

$$\mu_1 mg \sin \alpha \geq \mu_2 N$$
.

С учётом того, что сила реакции  $N = \mu_1 mg \cos \alpha$ , получаем


$$\operatorname{tg} \alpha \geq \mu_2$$
.

Соответственно, для минимального угла  $\alpha_{\min}$  выбираем случай равенства:

tg 
$$\alpha_{\min} = \mu_2$$
,  $\alpha_{\min} = 17^{\circ}$ .

Обратите внимание, что данный результат не зависит от значения коэффициента трения  $\mu_1$ , главное, чтобы он был отличен от нуля, иначе детали не смогут двигаться по конвейеру.

6. При выполнении условия  $\alpha > \alpha_{\min}$  детали будут скользить вдоль направляющей. Заметим, что по мере роста скорости  $\vec{u}$  движения деталей вдоль направляющей вектор  $\vec{w}$  скорости их проскальзывания относительно конвейера будет поворачиваться, «прижимаясь» к нормали AD. Вследствие этого будет поворачиваться и вектор силы трения  $\overrightarrow{F}_{\text{тр1}}$  из начального положения «вдоль конвейера» до установившегося положения, при котором он будет составлять некоторый угол  $\beta$  с нормалью AD к направляющей (рис.).



Следовательно, в установившемся режиме

$$F_{\text{Tp1}} \sin \beta = \mu_2 N = \mu_2 F_{\text{Tp1}} \cos \beta \Rightarrow \text{tg } \beta = \mu_2.$$

 ${\bf C}$  другой стороны, из треугольника скоростей  ${\it ABC}$  по теореме синусов имеем:

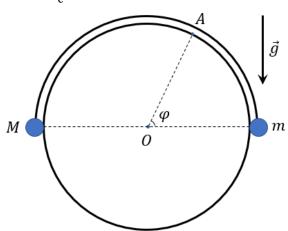
$$\frac{u}{\sin(\alpha-\beta)} = \frac{v}{\sin \xi}$$
, где  $\xi = \frac{\pi}{2} + \beta$ .

Выражая отсюда  $\operatorname{tg} \beta$ , получаем

$$tg\beta = \frac{v\sin\alpha - u}{v\cos\alpha} = \mu_2$$

Окончательно для установившейся скорости u поступательного движения деталей вдоль направляющей получаем

$$u = v(\sin \alpha - \mu_2 \cos \alpha) = 36 \frac{\text{CM}}{\text{C}}.$$


Матрица параметров и ответов к вариантам задачи 2

| Вариант | v,м/с | $\mu_1$ | $\mu_2$ | Ответ на вопрос 5 | Ответ на вопрос 6 |
|---------|-------|---------|---------|-------------------|-------------------|
| 1       | 1,5   | 0,40    | 0,30    | 17                | 36                |
| 2       | 1,9   | 0,60    | 0,45    | 24                | 21                |
| 3       | 1,2   | 0,80    | 0,20    | 11                | 39                |
| 4       | 1,3   | 0,50    | 0,40    | 22                | 20                |
| 5       | 1,4   | 0,30    | 0,10    | 6                 | 58                |

Максимум за задачу 11 баллов.

Задача 3. Вопросы 7-9

На гладкий горизонтально расположенный цилиндр радиусом R=1,3 см накинута лёгкая нерастяжимая нить, к концам которой прикреплены два маленьких шарика массами m и M (m < M). В начальный момент шарики находятся на одном уровне с осью цилиндра (см. рис.). Нить с шариками начинает соскальзывать с цилиндра из состояния покоя. Когда угол между горизонталью и направлением от оси цилиндра на лёгкий шарик стал равен  $\varphi=1,0$  рад, лёгкий шарик перестал давить на цилиндр. Ускорение свободного падения  $g=10\frac{M}{c^2}$ .



- **7.** Определите отношение масс шариков  $\frac{M}{m}$ . Ответ дайте с точностью до сотых долей. *(4 балла)*
- **8.** Какой угол  $\varphi'$  образует с горизонталью направление от оси цилиндра на лёгкий шарик в тот момент, когда сила давления лёгкого шарика на цилиндр максимальна? Ответ дайте в радианах с точностью до сотых долей. *(4 балла)*
- **9.** Какова скорость v' лёгкого шарика при прохождении им положения, в котором он действует на цилиндр с максимальной силой? Ответ дайте в см/с с точностью до целого числа. (2 балла)

#### Решение:

7. Рассмотрим систему в тот момент, когда шарик меньшей массы m находится в точке A. К этому моменту времени шарик большей массы M опустился на расстояние  $h=R\varphi$ .

Нить нерастяжима, значит, модули скоростей  $v_1$  и  $v_2$  шариков до момента отрыва от поверхности более лёгкого шарика одинаковы ( $v_1 = v_2 = v$ ).

Тогда по закону сохранения энергии:

$$-MgR\varphi + mgR\sin\varphi + \frac{mv^2}{2} + \frac{Mv^2}{2} = 0.$$

Отсюда получаем:

$$v^{2}(\varphi) = \frac{2gR}{m+M}(M\varphi - m\sin\varphi).$$

Шарик массой m в точке A не оказывает давления на поверхность цилиндра. Значит, сила нормальной реакции опоры в данной точке равна нулю.

Запишем второй закон Ньютона для лёгкого шарика в проекции на ось, направленную к оси цилиндра, в произвольный момент:

$$mg\sin\varphi - N(\varphi) = m\frac{v^2(\varphi)}{R},$$

отсюда

$$N(\varphi)=mg\sin\varphi-mrac{v^2(\varphi)}{R}=grac{3m^2\sin\varphi+mM\sin\varphi-2mM\varphi}{m+M}.$$
 Подставив нулевое значение для силы нормальной реакции

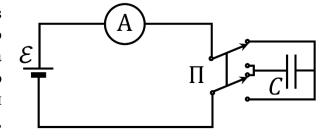
Подставив нулевое значение для силы нормальной реакции опорыв предыдущее выражение, получим ответ:  $\frac{M}{m} = \frac{3 \sin \varphi}{2\varphi - \sin \varphi} = 2,18$ .

8. В момент, когда более лёгкий шар оказывает максимальное давление на поверхность цилиндра, функция  $N(\varphi)$  достигает своего максимального значения, следовательно, производная  $\frac{dN}{d\varphi}(\varphi') = g \, \frac{3m^2 \cos \varphi' + mM \cos \varphi' - 2mM}{m+M} = 0$ . Отсюда получаем:

$$\cos \varphi' = \frac{2mM}{3m^2 + mM} \rightarrow \varphi' = \arccos\left(\frac{2M/m}{3 + M/m}\right) = 0,57$$
 рад.

9. Скорость шарика в этот момент определим из выражения:

$$v(\varphi') = \sqrt{\frac{2gR}{1 + \frac{M}{m}} \left(\frac{M}{m}\varphi' - \sin\varphi'\right)} = 24\frac{\text{CM}}{\text{c}}.$$


Матрица параметров и ответов к вариантам задачи 3

| Вариант | <i>R</i> , см | arphi, рад | Ответ на вопрос 7 | Ответ на<br>вопрос 8 | Ответ на вопрос 9 |
|---------|---------------|------------|-------------------|----------------------|-------------------|
| 1       | 1,3           | 1,0        | 2,18              | 0,57                 | 24                |
| 2       | 1,42          | 1,4        | 1,63              | 0,79                 | 25                |
| 3       | 4,43          | 1,15       | 1,97              | 0,65                 | 45                |
| 4       | 2,74          | 1,35       | 1,70              | 0,76                 | 35                |
| 5       | 4,66          | 0,66       | 2,60              | 0,38                 | 40                |

Максимум за задачу 10 баллов.

# Задача 4. Вопросы 10-13

Электрическая цепь состоит из источника ЭДС с пренебрежимо малым сопротивлением, конденсатора ёмкостью C=300 мкФ, стрелочного амперметра с сопротивлением  $R_A=5$  Ом и переключателя  $\Pi$ ,



способного очень быстро менять полярность подключения конденсатора в цепи. Полярность меняется с частотой  $\nu=10$  Гц, при этом показания амперметра составляют I=100 мA, а стрелка прибора практически не дрожит. Считайте, что показания стрелочного амперметра определяются средней величиной силы тока в цепи.

- **10.** Какова ЭДС  $\mathcal{E}$  источника? Ответ дайте в вольтах с точностью до десятых долей. (3 балла)
- **11.** Какой заряд q проходит через источник за время между двумя последовательными переключениями полярности? Ответ дайте в милликулонах с точностью до десятых долей. (2 балла)
- **12.** Какую среднюю мощность P развивает при таком режиме работы источник ЭДС? Ответ дайте в ваттах с точностью до сотых долей. (3 балла)
- **13.** Каковы были бы показания I' амперметра тепловой системы с таким же сопротивлением? Считайте, что показания амперметра тепловой системы определяются средней тепловой мощностью электрического тока, выделяющейся на сопротивлении амперметра. Ответ дайте в миллиамперах с точностью до целого числа. (4 балла)

### Решение:

10-11. За время между переключениями  $T=\frac{1}{\nu}=0.1$  с конденсатор успевает практически полностью перезарядиться (характерное время для цепи с конденсатором и резистором составляет  $\tau=R_AC=0.0015$  с, что существенно меньше рассчитанного T). При каждом переключении по цепи протекает заряд  $q=2C\mathcal{E}$ , средний ток при этом составляет  $I_1=\frac{2C\mathcal{E}}{T}=2C\mathcal{E}\nu$ .

Выразим ЭДС из полученного соотношения:

$$\mathcal{E} = \frac{I}{2C\nu} = 16.7 \text{ B}.$$

Заряд, проходящий по цепи за время одного переключения, тогда равен

$$q = \frac{I}{v} = 10,0$$
 мКл.

12. При каждом переключении источник ЭДС совершает работу  $A=\mathcal{E}q=\frac{I^2}{2C\nu^2},$  тогда средняя мощность источника равна

$$P = Av = \frac{I^2}{2Cv} = 1,67 \text{ Bt.}$$

13. Энергия конденсатора после каждого переключения одна и та же, значит, вся работа источника ЭДС переходит в тепло. За единицу времени в амперметре тепловой системы в среднем выделилась бы в виде тепла

энергия  $\frac{I^2}{2C\nu}$ , и показание амперметра тепловой системы I' можно найти из соотношения

$$I'^2R_A = \frac{I^2}{2C\nu}.$$

Отсюда

$$I' = \frac{I}{\sqrt{2C\nu R_A}} = 577 \text{ MA}.$$

Матрица параметров и ответов к вариантам задачи 4

| Вариант | С, мкФ    | $R_A$ , Ом | ν, Гц     | I, mA     |
|---------|-----------|------------|-----------|-----------|
| 1       | 300       | 5          | 10        | 100       |
| Ответы  | вопрос 10 | вопрос 11  | вопрос 12 | вопрос 13 |
|         | 16,7      | 10,0       | 1,67      | 577       |
| 2       | 400       | 8          | 12        | 120       |
| Ответы  | вопрос 10 | вопрос 11  | вопрос 12 | вопрос 13 |
|         | 12,5      | 10,0       | 1,50      | 433       |
| 3       | 550       | 8          | 10        | 250       |
| Ответы  | вопрос 10 | вопрос 11  | вопрос 12 | вопрос 13 |
|         | 22,7      | 25,0       | 5,68      | 843       |
| 4       | 400       | 10         | 12        | 360       |
| Ответы  | вопрос 10 | вопрос 11  | вопрос 12 | вопрос 13 |
|         | 37,5      | 30,0       | 13,50     | 1162      |
| 5       | 200       | 2          | 15        | 120       |
| Ответы  | вопрос 10 | вопрос 11  | вопрос 12 | вопрос 13 |
|         | 20,0      | 8,0        | 2,40      | 1095      |

Максимум за задачу 12 баллов.

# Задача 5. Вопросы 14-15

Взаимодействие воды с её паром трудно описать аналитически, поскольку зависимость давления насыщенных паров воды от температуры обычно задаётся в виде таблицы или графика. В таком случае при расчётах используют интерполяционные или графические методы.

# Зависимость давления насыщенного водяного пара от температуры

| t,°C | р, кПа | t,°C  | <i>р</i> , кПа |
|------|--------|-------|----------------|
| 50,0 | 12,33  | 90,0  | 70,10          |
| 55,0 | 15,74  | 95,0  | 84,51          |
| 60,0 | 19,92  | 100,0 | 101,33         |
| 65,0 | 25,00  | 110,0 | 143,27         |
| 70,0 | 31,16  | 120,0 | 198,54         |
| 75,0 | 38,54  | 130,0 | 270,11         |
| 80,0 | 47,34  | 140,0 | 361,37         |
| 85,0 | 57,81  | 150,0 | 476,01         |

Вам могут понадобиться следующие данные:

- плотность жидкой воды  $ho=1.0\cdot 10^3 {{\rm Kr}\over {\rm M}^3};$
- нормальное атмосферное давление  $p_0 = 1.01 \cdot 10^5$  Па;
- абсолютный нуль температуры  $t_0 = -273,15$ °C;
- ускорение свободного падения  $g = 9.81 \frac{M}{c^2}$ .
- **14.** Считая, что на каждом малом интервале температур давление насыщенного водяного пара зависит от температуры линейно, определите температуру кипения воды при внешнем давлении  $p = 1,17 \cdot 10^5$  Па. Ответ дайте в °C с точностью до десятых долей. *(3 балла)*
- **15.** В вертикальной тонкой трубке, закрытой сверху и погружённой открытым концом в сосуд с водой, находится в равновесии столб воды, который доходит до верхнего края трубы. Над свободной поверхностью жидкости в сосуде находится воздух при нормальном атмосферном давлении. Считая, что на каждом малом интервале температур давление насыщенного водяного пара зависит от температуры линейно, а капиллярные эффекты пренебрежимо малы, определите, какова может быть максимальная высота этого столба, если температура воды t = 83°C. Ответ дайте в метрах с точностью до десятых долей. (З балла)

#### Решение:

14. Зависимость давления насыщенного пара от температуры является также зависимостью температуры кипения от внешнего давления. Поэтому для решения данного пункта задачи можно воспользоваться приведённой в условии таблицей. Из таблицы следует, что искомая температура лежит в интервале от 100 до 110°C. Считая, что в этом интервале представленная зависимость линейна, находим

$$t_x = 100 \, ^{\circ}\text{C} + \frac{10 \, ^{\circ}\text{C}}{p_{110} - p_{100}} (p - p_{100}) \approx 103,7 \, ^{\circ}\text{C}.$$

15. Столб воды разорвётся, если давление в его верхней части станет равным давлению насыщенных паров при заданной температуре (при этом вода закипит).

Отсюда следует:

$$p_0 - \rho g h = p_{\text{Hac}} \Rightarrow h = \frac{p_0 - p_{\text{Hac}}}{\rho g}.$$

Для определения давления запишем аналогично предыдущему пункту:

83°C = 80°C + 
$$\frac{5°C}{p_{85} - p_{80}}(p_{\text{Hac}} - p_{80}) \Rightarrow p_{\text{Hac}} \approx 53,62 \text{ кПа.}$$

Тогда

$$h=rac{p_0-p_{ ext{ iny HaC}}}{
ho g}pprox 4,8$$
 м.

Матрица параметров и ответов к вариантам задачи 5

| Вариант | <i>p</i> , 10 <sup>5</sup> Па | t, °C | Ответ на<br>вопрос 14 | Ответ на<br>вопрос 15 |
|---------|-------------------------------|-------|-----------------------|-----------------------|
| 1       | 1,17                          | 83    | 103,7                 | 4,8                   |
| 2       | 0,50                          | 68    | 81,3                  | 7,4                   |
| 3       | 0,68                          | 77    | 89,1                  | 6,0                   |
| 4       | 1,30                          | 72    | 106,8                 | 6,8                   |
| 5       | 1,10                          | 87    | 102,1                 | 3,9                   |

Максимум за задачу 6 баллов.

Максимальный балл за работу – 50.