ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ХИМИЯ. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 100.

Задача 1 (№1-4)

Для каждой из указанных частиц составьте электронную конфигурацию и заполните таблицу:

Ответ

Частица	Общее число электронов	Число неспаренных электронов (в основном состоянии)
1) ион Н-	2	0
2) атом S	16	2
3) атом Fe	26	4
4) ион Fe ³⁺	23	5

За каждый верный ответ – 1 балл. Всего за задания №1-4 – 8 баллов.

Решение

- 1) Электронная конфигурация иона $H^- 1s^2$. Всего -2 электрона, неспаренных нет.
- 2) Атом S 16 электронов. Внешний уровень: $3s^23p^4$. На 3р-подуровне, по правилу Хунда, 2 неспаренных электрона.
- 3) Атом Fe -26 электронов. Электронная конфигурация: [Ar] $3d^64s^2$. На 3d-подуровне -6 электронов на 5 орбиталях. По правилу Хунда -4 неспаренных электрона.
- 4) Ион $Fe^{3+} 26-3 = 23$ электрона. Электронная конфигурация: [Ar] $3d^5$. На 3d-подуровне 5 электронов на 5 орбиталях, по правилу Хунда все 5 неспаренные.

Задача 2 (№5)

В растворе вещества $\bf A$ с концентрацией 0,01 моль/л рH = 12, а в растворе вещества $\bf B$ с такой же концентрацией рH = 3,58. Из приведённого списка веществ выберите формулы $\bf A$ и $\bf B$. Каждому веществу соответствует только одна формула.

Вещество **A**Вещество **B**Н2SO₄

НI

КОН

КСІО₄

NH₃

AlCl₃

Ответ

Вещество А	КОН	
Вещество В	AlCl ₃	

За каждый верный ответ – 4 балла. Всего 8 баллов.

Решение

- 1) рH = 12, следовательно, рOH = 2, $[OH^-] = 10^{-2} = 0,01$ моль/л. Равновесная концентрация гидроксид-ионов совпадает с концентрацией вещества, следовательно, **A** сильное основание, щёлочь, KOH.
- 2) Среда раствора кислая, $[H^+] = 10^{-3,58}$ моль/л это меньше концентрации вещества 0,01 моль/л, следовательно, вещество **B** проявляет в растворе слабые кислотные свойства. Это соль слабого основания, в данном случае, $AlCl_3$, которая гидролизуется по катиону: $Al^{3+} + H_2O \rightleftharpoons AlOH^{2+} + H^+$.

Задача 3 (№6)

Дана схема превращений:

$$\mathbf{X}_1 \xrightarrow{H_2O, Hg^{2+}} \mathbf{C}_2H_4O \rightarrow \mathbf{C}_3H_5NO \xrightarrow{NaOH / H_2O} \mathbf{X}_2 \rightarrow \mathbf{C}_3H_6O_3 \xrightarrow{C_2H_5OH, H^+} \mathbf{X}_3$$

Определите неизвестные вещества X_1 – X_3 . В ответе укажите их молярные массы (в г/моль) с точностью до целых.

Ответ

Вещество	X_1	X_2	X ₃
Молярная масса (г/моль)	26	112	118

За каждый верный ответ – 2 балла. Всего 6 баллов.

Решение

1.
$$C_2H_2 + H_2O \rightarrow CH_3CHO$$

$$X_1 - C_2H_2$$
 (M = 26 г/моль)

- 2. $CH_3CHO + HCN \rightarrow CH_3CH(OH)CN$
- 3. $CH_3CH(OH)CN + NaOH + H_2O \rightarrow CH_3CH(OH)COONa + NH_3$

$$X_2 - CH_3CH(OH)COONa$$
 (M = 112 г/моль)

- 4. $CH_3CH(OH)COONa + HCl = CH_3CH(OH)COOH + NaCl$
- 5. $CH_3CH(OH)COOH + C_2H_5OH \hookrightarrow CH_3CH(OH)COOC_2H_5 + H_2O$

$$X_3 - CH_3CH(OH)COOC_2H_5$$
 (M = 118 г/моль)

Задача 4 (№7)

Установите соответствия между превращением и типом реакции, к которому оно относится.

$\begin{array}{c} R \longrightarrow \\ A) \end{array} \longrightarrow \begin{array}{c} O \\ R \longrightarrow \\ OH \end{array}$	1) окисление
$B) \stackrel{R}{==} N \longrightarrow \stackrel{R}{\longrightarrow} NH_2$	2) восстановление
B) CI OH	3) гидролиз
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Д) R O R' - R OH + R'-OH	
(E) OH + O + ✓	

Ответ

A	Б	В	Γ	Д	E
3	2	3	1	2	1

За каждый верный ответ – 1 балл. Всего 6 баллов.

- 1) Степень окисления C^{+3} одинаковая и в нитриле, и в кислоте. Следовательно, это не OBP, а гидролиз.
- 2) Нитрил присоединяет атомы Н это восстановление.
- 3) Атом Cl замещается на группу OH это гидролиз.
- 4) Алкен присоединяет атомы О это окисление.
- 5) Сложный эфир расщепляется на два спирта: атомов водорода становится больше, это восстановление.
- 6) Число атомов кислорода увеличивается это окисление.

Задача 5 (№8)

Одно из самых твёрдых веществ \mathbf{X} состоит из двух элементов, \mathbf{A} и \mathbf{B} . При сжигании его навески в атмосфере кислорода образовалось 18,24 г твёрдого оксида элемента \mathbf{A} (31,6 % О по массе) и 3,584 л (в пересчёте на н. у.) газа, дающего осадок с известковой водой, но не обесцвечивающего бромную воду. Определите неизвестные элементы и вещество \mathbf{X} , в ответ запишите их формулы.

Ответ

Элемент А	Cr		
Элемент В	С		
Вещество Х	Cr3C2		

Всего 8 баллов – по 2 балла за каждый элемент и 4 балла за формулу Х.

Решение

Формула оксида — R_2O_n .

Массовая доля кислорода: $\omega(0) = \frac{16n}{2M(R)+16n} = 0,316$, откуда M(R) = 17,3n.

При n = 3, M(R) = 52 г/моль – это Cr (элемент A), оксид – Cr₂O₃.

Газ, дающий осадок с известковой водой, но не обесцвечивающий бромную воду, $-\mathrm{CO}_2$, элемент B – углерод C.

Найдём формулу карбида хрома.

 $\nu(Cr_2O_3) = 18,24 / 152 = 0,12$ моль

 $\nu(Cr) = 2\nu(Cr_2O_3) = 0,24$ моль

 $\nu(C) = \nu(CO_2) = 3,584 / 22,4 = 0,16$ моль

v(Cr) : v(C) = 0.24 : 0.16 = 3 : 2

Формула карбида — Cr_3C_2 .

Задача 6 (№9)

В каждом из приведённых превращений участвует одно и то же сложное вещество X. Используя правые части уравнений химических реакций, установите формулы веществ X, A–C.

$$\mathbf{A} + \mathbf{Cl}_2 = \mathbf{X}$$

$$\mathbf{X} + \mathbf{CH}_4 = \mathbf{A} + \mathbf{B} + \mathbf{C}$$

$$\mathbf{X} + 2\mathbf{H}_2\mathbf{O} = \mathbf{H}_2\mathbf{SO}_4 + 2\mathbf{C}$$

Ответ

X	A	В	C
SO2C12	SO2	CH3Cl	HC1

За каждый верный ответ – 2 балла. Всего 8 баллов.

Решение

Сложим первое уравнение со вторым:

$$A + Cl_2 + X + CH_4 = X + A + B + C$$

и сократим А и Х:

$$Cl_2 + CH_4 = \mathbf{B} + \mathbf{C}$$

$$\mathbf{B} - \mathrm{CH}_3\mathrm{Cl}$$
, $\mathbf{C} - \mathrm{HCl}$.

Вещество **X** при гидролизе даёт $H_2SO_4 + 2HCl$, тогда **X** – SO_2Cl_2 , он образуется в результате присоединения Cl_2 к SO_2 (вещество **A**).

Всероссийская олимпиада школьников. Химия. 2025–2026 уч. г. Муниципальный этап. 11 класс

Для полного гидролиза смеси двух сложных эфиров (**A** и **B**) массой 7,19 г потребовалось 40 г 10%-го раствора гидроксида натрия. К образцу смеси (такой же массы) добавили избыток аммиачного раствора оксида серебра. При этом выделилось 3,24 г серебра.

10. Определите состав сложных эфиров **A** и **B**, если известно, что **A** имеет меньшую молярную массу. В ответе укажите их молярные массы (в Γ /моль) с точностью до целых.

Ответ

M(A), г/моль =	60	(4 балла)
M(B), г/моль =	74	(4 балла)

11. Найдите состав смеси. В ответ запишите меньшую из массовых долей (в %) с точностью до десятых.

Ответ

ω(%) =	12,5 (диапазон от 12 до 13)	(4 балла)
--------	-----------------------------	-----------

Всего за задания №10-11 – 12 баллов.

Решение

Уравнения реакций гидролиза сложных эфиров:

- (A) $R_1COOR_2 + NaOH \rightarrow R_1COONa + R_2OH$
- (B) $R_3COOR_4 + NaOH \rightarrow R_3COONa + R_4OH$

$$\nu$$
(NaOH) = $40 \cdot 0.1/40 = 0.1$ моль

Суммарное количество сложных эфиров **A** и **B** равно количеству вещества гидроксида натрия, 0,1 моль.

Так как при добавлении к смеси выделяется серебро, один или оба сложных эфира образованы муравьиной кислотой.

$$HCOOR_2 + 2[Ag(NH_3)_2]OH \rightarrow 2Ag + R_2OH + (NH_4)_2CO_3 + 2NH_3$$

 $\nu(Ag) = 3,24/108 = 0,03$ моль

Если бы оба сложных эфира были образованы муравьиной кислотой, количество вещества серебра было бы равно удвоенному суммарному количеству вещества сложных эфиров (0,2 моль). В нашем случае образовалось только 0,03 моль серебра. Следовательно, только один сложный эфир **A** образован муравьиной кислотой.

$$\nu(A) = \nu(Ag)/2 = 0.015$$
 моль; $\nu(B) = 0.1 - 0.015 = 0.085$ моль

Всероссийская олимпиада школьников. Химия. 2025–2026 уч. г. Муниципальный этап. 11 класс

Массу смеси эфиров А и В можно представить уравнением:

$$7,19 = 0,015 \cdot M(A) + 0,085 \cdot M(B)$$

Далее методом подбора можно найти единственно возможный вариант решения: $M(R_2) = M(R_3) = M(R_4) = 15 г/моль$. Следовательно, **A** — метилформиат (HCOOCH₃, M = 60 r/моль), а B — метилацетат (CH₃COOCH₃, M = 74 r/моль).

$$m(HCOOCH_3) = 60 \cdot 0.015 = 0.9$$
 г $m(CH_3COOCH_3) = 74 \cdot 0.085 = 6.29$ г Масса исходной смеси сложных эфиров равна 7.19 г. $ω(HCOOCH_3) = 0.9/7.19 \cdot 100 \% = 12.5 \%$; $ω(CH_3COOCH_3) = 87.5 \%$

Задача 8 (№12)

Ниже приведена таблица со средними значениями энергии некоторых связей.

Связь	Энергия связи, кДж/моль
С-С	348
C=C	620
С–Н	414
С–О	344
C=O	708
О–Н	460
O=O	499

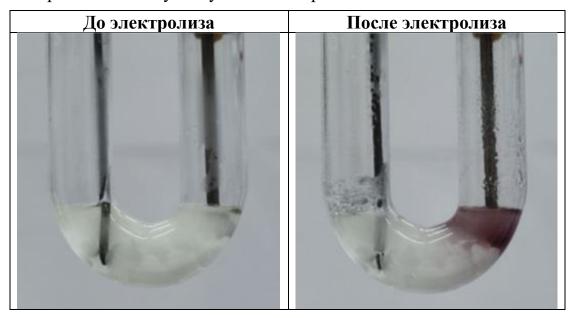
Используя данные таблицы, рассчитайте теплоту (в кДж), выделяющуюся при сгорании 1 моль паров этанола с образованием паров воды. Ответ округлите до целых.

Выделится кДж теплоты.

Ответ: 873 кДж.

За верный ответ – 8 баллов.

Решение


$$Q = 4E(C=O) + 6E(O-H) - 3E(O=O) - E(C-O) - E(C-C) - 5E(C-H) - E(O-H) = 4 \cdot 708 + 6 \cdot 460 - 3 \cdot 499 - 344 - 348 - 5 \cdot 414 - 460 = 873 кДж.$$

Задача 9 (№13)

Учитель химии одной из московских школ демонстрировал на уроке получение очень сильного окислителя **A** при помощи электролиза. Катодом послужил стержень из материала **Б**, который применяется в качестве твёрдой смазки. Анодом был заострённый стержень, состоящий из материала, который содержит вещество **B** и до 2,14 % вещества **Б**. Стержни для катода можно купить в канцелярском магазине, стержни для анода — на строительном рынке.

На фотографиях ниже можно увидеть содержимое U-образной трубки, в которой протекал электролиз, до проведения реакции и после. В U-трубку предварительно поместили гранулы гигроскопичного едкого вещества Γ , меняющего цвет раствора дихромата калия на жёлтый и окрашивающего пламя спиртовки в фиолетовый цвет. Гранулы Γ залили небольшим количеством воды, после чего провели электролиз.

Идентифицируйте все вещества, упомянутые в задаче. В ответе укажите молярные массы (в г/моль) веществ **A**, **B**, **B**, **C** с точностью до целых. Для материалов **B** и **B** нужно указать молярные массы основных компонентов.

Ответ

Вещество	A	Б	В	Γ
Молярная масса (г/моль)	198	12	56	56

За каждый верный ответ – 2 балла. Всего 8 баллов.

Решение

Вещество	A	Б	В	Γ
Формула	K ₂ FeO ₄	С	Fe	KOH
Молярная масса (г/моль)	198	12	56	56

Стержень — стальной, сталь состоит из углерода С (2,14%) — вещество **Б** и железа Fe — вещество **В**. Едкое вещество — щёлочь, КОН (фиолетовый цвет пламени).

На аноде происходит окисление железа до феррат-иона:

 $Fe + 8OH^{-} - 6e \rightarrow FeO_{4}^{2-} + 4H_{2}O$. Вещество **A** – феррат калия.

Задача 10 (№14)

Ниже приведена цепочка превращений. Вещество \mathbf{X}_1 — первый представитель своего класса веществ, бесцветный газ при обычных условиях, способствует созреванию плодов, его относительная молекулярная масса не превышает 30. Молекулы веществ \mathbf{X}_1 и \mathbf{X}_5 содержат по одному циклу, в каждый из которых входят атомы двух элементов (могут быть разные атомы в разных молекулах). Молекулы всех веществ имеют симметричное строение.

$$X_1 \xrightarrow{O_2} X_2 \xrightarrow{H_2O} X_3 \xrightarrow{O_2} X_4 \xrightarrow{(NH_2)_2CO} X_5$$

$$\downarrow W(O) \approx 40.7 \%$$

Определите все неизвестные вещества. В ответе укажите их молярные массы (в г/моль) с точностью до целых.

Ответ

Вещество	X_1	X_2	X ₃	X 4	X 5
Молярная масса (г/моль)	28	44	62	58	118

За каждый верный ответ – 2 балла. Всего 10 баллов.

Решение

Вещество	\mathbf{X}_1	\mathbf{X}_2	X ₃	X ₄	X_5
Структурная формула	H ₂ C=CH ₂	H ₂ C—CH ₂	H ₂ C—CH ₂ 	O O H	HN NH HO OH
Молярная масса (г/моль)	28	44	62	58	118

Задача 11 (№15)

Смесь простых веществ A и B смешали в массовом отношении 8:1 и тщательно перемешали. Полученная смесь предполагает большой избыток вещества A по сравнению со стехиометрическим соотношением масс A:B-4,39:1. Смесь поместили в тигель и подожгли магниевой лентой. По окончании реакции полученную смесь, включая продукт C, перенесли в колбу Вюрца, закрыли пробкой C капельной воронкой. При добавлении к соединению C воды выделился газ D.

Соединение \mathbf{D} — бесцветный горючий тяжёлый газ, очень ядовит, имеет отвратительный запах. Порог ощущения запаха \mathbf{D} в воздухе составляет всего 0,05 объёмных частей на миллион (ppm), что соответствует концентрации 0,181 мг/м³ (н. у.).

Определите вещества А-D. В поля для ответа введите их формулы.

Ответ

A	В	C	D
			H2Se
Se	Al	Al2Se3	или
			SeH2

За каждый верный ответ – 2 балла. Всего 8 баллов.

Решение

Начнём с газа **D**. В кубометре воздуха содержится 0,05 мл газа массой 0,181 мг. Молярная масса: $M(\mathbf{D}) = \frac{m}{\nu} = \frac{0,181}{\frac{0,05}{22,4}} = 81$ г/моль, $\mathbf{D} - \mathrm{H_2Se}$.

C – бинарный селенид, подверженный полному гидролизу. Пусть его формула – R_2Se_n , тогда m(Se): m(R) = 79n / 2M(R) = 4,39: 1, откуда <math>M(R) = 9n. При n = 3 получаем M(R) = 27 г/моль – Al. Получаем:

$$\mathbf{A} - \mathbf{Se}$$
, $\mathbf{B} - \mathbf{Al}$, $\mathbf{C} - \mathbf{Al}_2 \mathbf{Se}_3$, $\mathbf{D} - \mathbf{H}_2 \mathbf{Se}$.

Задача 12 (№16)

Бинарное вещество X_1 чёрного цвета входит в состав некоторых батареек. Оно является сильным окислителем и даёт газ при действии горячей концентрированной соляной кислоты. К порошку X_1 прилили разбавленную серную кислоту и добавили некоторое количество сульфита натрия. Полученную смесь перемешали, в результате вещество X_1 полностью растворилось, а в растворе образовалась соль X_2 . При добавлении к полученному раствору гидрокарбоната натрия выделился газ и образовался осадок средней соли X_3 , содержащий 47.8% металла по массе. Осадок отфильтровали и растворили в азотной кислоте. При упаривании и последующем охлаждении из раствора выпали кристаллы безводной соли X_4 , при прокаливании которой образуется вещество X_1 .

Если порошок X_1 сплавить со смесью нитрата калия и гидроксида калия, то образуется вещество X_5 , раствор которого имеет зелёную окраску. Дополнительно известно, что в состав всех веществ $X_1 - X_5$ входят атомы одного элемента-металла.

Определите вещества $X_1 - X_5$. В поля для ответа введите их формулы.

Ответ

X ₁	X_2	X ₃	X_4	X_5
MnO2	MnSO4	MnCO3	Mn(NO3)2	K2MnO4

За каждый верный ответ – 2 балла. Всего 10 баллов.

Решение

Подсказка про батарейки и реакцию с соляной кислотой наводит на мысль, что $\mathbf{X}_1 - \text{MnO}_2$. Реакции:

$$\begin{split} MnO_2 + Na_2SO_3 + H_2SO_4 &= MnSO_4 + Na_2SO_4 + H_2O \\ &\quad \textbf{X}_2 - MnSO_4 \\ MnSO_4 + 2NaHCO_3 &= MnCO_3 \downarrow + Na_2SO_4 + CO_2 + H_2O \\ &\quad \textbf{X}_3 - MnCO_3 \left(\omega(Mn) = 55 \ / \ 115 = 0,478 \right) \\ MnCO_3 + 2HNO_3 &= Mn(NO_3)_2 + CO_2 + H_2O \\ &\quad \textbf{X}_4 - Mn(NO_3)_2 & Mn(NO_3)_2 \xrightarrow{t} MnO_2 + 2NO_2 \\ MnO_2 + KNO_3 + 2KOH &= K_2MnO_4 + KNO_2 + H_2O \left(\text{окислительное сплавление} \right) \\ &\quad \textbf{X}_5 - K_2MnO_4 \end{split}$$