ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ХИМИЯ. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 100.

Задача 1

Природное соединение X состоит из двух элементов, **A** и **B**. При сжигании его навески в атмосфере кислорода образовалось 12,96 г твёрдого простого вещества, образованного элементом **A**, и 1,344 л (в пересчёте на н. у.) газа, дающего осадок с известковой водой и обесцвечивающего бромную воду. Определите неизвестные элементы и вещество \mathbf{X} , в ответе запишите их формулы.

Ответ

Элемент А –	Ag	(2 балла)
Элемент В –	S	(2 балла)
Вещество Х –	Ag2S	(4 балла)

Всего 8 баллов.

Решение

По описанию понятно, что газ — это SO_2 , следовательно, элемент **B** — S. При обжиге сульфидов простое вещество образуется в том случае, если оксид элемента при нагревании разлагается. Таким свойством обладает серебро Ag — элемент **A**.

$$u(Ag) = 12,96 / 108 = 0,12 моль$$
 $u(S) = \nu(SO_2) = 1,344/22,4 = 0,06 моль$
 $u(Ag) : \nu(S) = 2 : 1, следовательно формула $\mathbf{X} - Ag_2S$.$

Задача 2

Даны схемы превращений:

$$A(p-p) + B(p-p) \rightarrow BaSO_4 + B(p-p)$$
 $B(p-p) + H_2O \xrightarrow{\mathfrak{I} \to \mathbf{E}(\mathbf{F}) \to \mathbf{B}(\mathbf{F}) \to \mathbf{B}(\mathbf{F}) \to \mathbf{B}(\mathbf{F}) + \mathbf{B}(\mathbf{F})$
 $\mathbf{K}(\mathbf{F}) + \mathbf{H}_2O(\mathbf{H}) \to \mathbf{S}(\mathbf{F})$

Вещество **A** окрашивает пламя в фиолетовый цвет, **Б** — бинарное соединение, которое с раствором нитрата серебра даёт белый творожистый осадок.

Определите вещества А-Ж, в ответ введите их формулы.

Ответ

A	Б	В	Γ	Д	E	Ж	3
K2SO4	BaCl2	KC1	KOH	C12	KClO3	P2O5	H3PO4
						или	или
						P2O3	H3PO3

По 1 баллу за каждый ответ. Итого 8 баллов.

Решение

Вещество **A** — сульфат металла, катионы которого окрашивают пламя в фиолетовый цвет, т.е. калия. **A** — K_2SO_4 . **Б** — $BaCl_2$ (содержит Ва и даёт белый осадок с $AgNO_3$). Из первой реакции очевидно, что **B** — KCl. При электролизе раствора KCl образуются KOH (вещество Γ) и Cl_2 (газ Π).

$$KOH + Cl_2 \xrightarrow{t} KCl + KClO_3 + H_2O$$
 Вещество $E - KClO_3$ $KClO_3 + P \xrightarrow{t} KCl + P_2O_5$

Вещество $\mathbf{W} - P_2O_5$ (или P_2O_3 при недостатке KClO₃). С водой оксиды фосфора дают H_3PO_4 или H_3PO_3 (вещество \mathbf{W}).

Задача 3 (№ 3-4)

Простое вещество — s-металл имеет плотность 1,7 г/см³. Концентрация валентных электронов в электронном облаке металла равна 142 моль/л. Определите металл и укажите число валентных электронов в его атоме.

Ответ

3. Формула металла –	Mg	(6 баллов)
4. Число валентных электронов в атоме =	2	(2 балла)

Всего за задания № 3-4 – 8 баллов.

Решение

Возьмём 1 л металла, тогда $\nu(Me) = 1000 \cdot 1,7 / M(Me)$,

 $v(e) = v(Me) \cdot N = 142 \ (N - число валентных электронов в атоме). Отсюда <math>M(Me) = 12N$. При N = 2, M(Me) = 24 г/моль — Mg, атом содержит 2 валентных электрона.

Задача 4 (№ 5-6)

Массовая доля углерода в углеводороде C_xH_y составляет 92,3 %, а плотность паров по водороду равна 39. Этот углеводород обесцвечивает раствор брома, даёт осадок при взаимодействии с аммиачным раствором оксида серебра, а при исчерпывающем гидрировании превращается в соединение с неразветвлённым углеродным скелетом. При деструктивном окислении углеводорода подкисленным раствором перманганата калия образуются уксусная кислота, пропандиовая (малоновая) кислота и углекислый газ. Установите формулу углеводорода C_xH_y . Установите структуру углеводорода C_xH_y составьте уравнение его окисления. В ответ запишите отношение коэффициентов при КМпO₄ и C_xH_y с точностью до десятых.

Ответ

5. Формула углеводорода —	С6Н6 (2 б алла)
$6. \nu(KMnO_4) / \nu(C_xH_y) =$	2,8 (6 баллов) За ответ: 4,7 - 3 балла

Всего за задания № 5-6 - 8 баллов.

Решение

Углеводород – CH₃–C≡C–CH₂–С≡CH, ненасыщенный изомер бензола с открытой цепью. Уравнение реакции окисления:

$$5CH_3-C\equiv C-CH_2-C\equiv CH+14KMnO_4+21H_2SO_4 \rightarrow 5CH_3COOH+5HOOCCH_2COOH+5CO_2+7K_2SO_4+14MnSO_4+16H_2OV(KMnO_4) / V(C_6H_6)=14/5=2,8$$

Задача 5 (№ 7)

7. Для нахождения молярной массы неизвестного вещества можно использовать измерение свойств его раствора. Одним из таких свойств является разность температур замерзания растворителя и раствора, которая находится по формуле:

$$\Delta T_{\text{замерзания}} = K \cdot m$$
,

где K – криоскопическая константа растворителя [K·кг/моль], m – моляльность раствора, т.е. количество растворённого вещества в 1 кг растворителя [моль/кг].

Навеску сахарозы ($C_{12}H_{22}O_{11}$) массой 34,2 г растворили в 500 г воды. На сколько градусов температура замерзания раствора меньше температуры замерзания воды (в °C)? $K(H_2O) = 1,86 \text{ K}\cdot\text{кг/моль}$. В ответ введите число с точностью до сотых.

Ответ: 0,37 и диапазон от 0,37 до 0,38, принимается также -0,37 и диапазон от -0,38 до -0,37. За верный ответ 6 баллов.

За ответ в диапазоне [0,35;0,37) и (0,38;0,4] выставляется **3 балла.**

Всероссийская олимпиада школьников. Химия. 2025–2026 уч. г. Муниципальный этап. 10 класс

Решение

Найдём моляльность раствора. На 1 кг воды приходится $34,2\cdot1000/500=68,4$ г сахарозы, что составляет 68,4/342=0,2 моль. m=0,2 моль/кг. Температура замерзания раствора меньше температуры замерзания воды на $\Delta T_{\text{замерзания}}=1,86\cdot0,2=0,372\approx0,37$ К.

Задача 6 (№ 8-9)

Серый порошок массой 11,0 г, представляющий собой смесь бертолетовой соли и бинарного вещества **X**, аккуратно нагревали до тех пор, пока масса твёрдого остатка не перестала уменьшаться, в результате выделилось 2,69 л (н. у.) газа, поддерживающего горение. Твёрдый остаток перемешали с водой, при этом часть остатка не растворилась. Осадок отфильтровали и высушили. Высушенный осадок, являющийся веществом **X**, содержит 36,8 % кислорода по массе.

8. Определите вещество X, в ответ запишите его формулу.

Ответ

Формула X – MnO2 (4	4 балла)
----------------------------	----------

9. Какова массовая доля (%) бертолетовой соли в исходном порошке? В ответ введите число, округлив его до целого значения.

Ответ

ω %(KClO ₃) =	89 (принимать диапазон от 89 до 90)	(4 балла)
----------------------------------	-------------------------------------	-----------

Всего за задания № 8–9 – 8 баллов.

Решение

- **8.** Вещество $\mathbf{X} \text{MnO}_2$ ($\omega(O) = 32/87 = 0,368$), катализатор разложения бертолетовой соли.
- 9. Газ, поддерживающий горение, кислород О2.

$$2KClO_3 = 2KCl + 3O_2 \uparrow$$

 $v(O_2) = 2,69 / 22,4 = 0,12$ моль
 $v(KClO_3) = 2/3 \cdot 0,12 = 0,08$ моль
 $m(KClO_3) = 0,08 \cdot 122,5 = 9,8$ г
 ω $KClO_3) = 9,8 / 11,0 = 0,89 = 89 %$

При обработке циклоалкена **Z**, не содержащего первичных атомов углерода, холодным водным раствором перманганата калия образовалось только одно органическое вещество, причём массовые доли углерода в циклоалкене и в продукте окисления различаются в 1,414 раза.

10. Определите циклоалкен **Z**. Запишите в ответ его молекулярную формулу и название.

Ответ

Формула Z	С6Н10	(6 баллов)
Название Z	циклогексен	(2 балла)

11. Составьте уравнение реакции окисления циклоалкена **Z** холодным водным раствором перманганата калия. В ответ запишите сумму двух коэффициентов — перед перманганатом калия и перед циклоалкеном **Z** (коэффициенты — минимальные натуральные числа).

Ответ

Сумма двух коэффициентов =	5	(2 балла)
Сумма двух коэффициентов =	5	(2 балла)

Всего за задания № 10-11 - 10 баллов

Решение

Циклоалкен — C_nH_{2n-2} . При мягком окислении двойная связь в цикле присоединяет две группы OH:

$$3 C_n H_{2n-2} + 2KMnO_4 + 4H_2O \rightarrow 3C_n H_{2n-2}(OH)_2 + 2MnO_2 + 2KOH.$$

Соотношение между массовыми долями углерода в циклоалкене и в циклическом диоле:

$$\frac{12n}{12n+2n-2} = 1,414 \cdot \frac{12n}{12n+2n-2+2\cdot 17}$$

или

$$14n + 32 = 1,414 \cdot (14n - 2),$$

n = 6. Формула **Z** – С₆H₁₀. По условию, циклоалкен – неразветвлённый, название – циклогексен.

Сумма двух коэффициентов в уравнении окисления: 3 + 2 = 5.

Задача 8 (№ 12)

Имеется смесь этана и ацетилена.

- 1) Рассчитайте объём (л) углекислого газа, который образуется при полном сжигании 15 л данной смеси. В ответ запишите число, округлив его до целого значения.
- 2) Такую же смесь пропустили через избыток бромной воды, при этом объём газа уменьшился в 10 раз (объёмы измерены при одинаковых условиях). Рассчитайте среднюю молярную массу (г/моль) исходной смеси. В ответе запишите число с точностью до десятых.

Ответ

1) $V(CO_2)$, $\pi =$	30 (2 ба лла)	
	26,4 (4 б алла)	
2) М(смеси), г/моль =	Ответ в диапазоне от 26 до 26,3 и от 25,4	
	до 26,8 оценивается 2 баллами	

Ответ в

Всего за задание № 12 – 6 баллов.

Решение

- 1) При сгорании каждого углеводорода образуется по $2CO_2$, следовательно, $V(CO_2) = 2V(\text{смеси}) = 30 \text{ л.}$
- 2) При пропускании через бромную воду ацетилен поглощается, а остаётся этан, объём которого в 10 раз меньше объёма смеси. Значит, в исходной смеси объёмное соотношение C_2H_6 : $C_2H_2 = 1:9$. Средняя молярная масса смеси:

$$M(\text{смеси}) = \frac{1.30 + 9.26}{1 + 9} = 26,4 \text{ г/моль}.$$

Задача 9 (№ 13-15)

Гомологи — это вещества, обладающие схожим строением и свойствами и отличающиеся по составу на одну или несколько *гомологических разноствей* — повторяющихся структурных единиц. Чаще всего гомологической разностью называют фрагмент — CH_2 —. Однако могут быть и другие структурные единицы, выступающие в этой роли.

Газообразное вещество $\bf A$ состоит из двух элементов, имеет плотность по гелию 25, при его полимеризации образуется вещество, которое используется для создания антипригарных покрытий. Вещество $\bf B$ — ближайший гомолог $\bf A$, также состоит из двух элементов, а его относительная молекулярная масса не превышает 160.

13. Как в быту называется полимер, получаемый из вещества А?

Ответ

Название полимера –	тефлон
---------------------	--------

14. Чему равны относительные молекулярные массы **A** и **Б**? Ответ приведите с точностью до целых.

Ответ

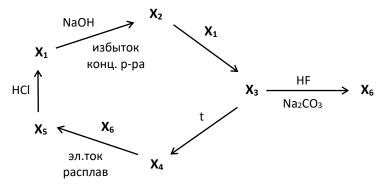
$M_{\rm r}(\mathbf{A}) =$	100
$M_{\rm r}(\mathbf{B}) =$	150

15. Какой фрагмент является гомологической разностью? В ответ введите химическую формулу (например, CH2).

Ответ

Формула гомологической разности –	CF2 или F2C
-----------------------------------	-------------

По 2 балла за каждый ответ.


Всего за задания № 13–15 – 8 баллов.

Решение:

- **13.** Вещество **A** тетрафторэтилен C_2F_4 (молярная масса равна 100 г/моль, можно проверить по плотности по гелию), бытовое название тефлон, или фторопласт. Догадаться о тетрафторэтилене можно по намёку об антипригарных покрытиях, которые изготавливаются из тефлона. $M_r(\mathbf{A}) = 100$.
- **14.** Вещество **Б** также бинарное, следовательно, состоит только из атомов углерода и фтора. Тетрафторэтилен простейший представитель алкенов, в которых все атомы водорода замещены на атомы фтора, следовательно, общая формула этого класса соединений C_nF_{2n} , а гомологическая разница это $-CF_2$ —. У второго члена гомологического ряда C_3F_6 молярная масса равна 100 + 50 = 150 г/моль, следовательно, он является веществом **Б**.
- **15.** Гомологическая разность в ряду полностью замещённых фторалкенов: CF₂.

Задача 10 (№ 16)

Дана цепочка превращений. Все вещества X_1 – X_6 содержат атомы одного и того же элемента.

Массовая доля этого элемента в X_3 равна 34,6 %. Вещество X_5 — продукт электролиза на катоде. Определите вещества X_1 — X_6 , в ответе укажите их молярные массы. При расчёте молярные массы элементов округляйте до целых, кроме хлора, его молярную массу примите равной 35,5 г/моль.

Ответ

Вещество	\mathbf{X}_1	\mathbf{X}_2	X ₃	X_4	X ₅	X_6
Молярная масса	133,5	198, или 118, или 154	78	102	27	210

По 2 балла за каждый ответ. Итого 12 баллов.

Решение

Вещество	\mathbf{X}_1	X_2	X 3	X 4	X 5	X_6
Формула	AlCl ₃	Na ₃ [Al(OH) ₆], или Na[Al(OH) ₄], или Na[Al(OH) ₄ (H ₂ O) ₂]	Al(OH) ₃	Al ₂ O ₃	Al	Na ₃ [AlF ₆]
Молярная масса (г/моль)	133,5	198, или 118, или 154	78	102	27	210

Задача 11 (№ 17–19)

В навеске некоторого вещества А массой 320 мг содержится $4,82 \cdot 10^{21}$ атомов элемента \mathbf{X} , $9,63 \cdot 10^{21}$ атомов водорода и $7,22 \cdot 10^{21}$ атомов кислорода. При аккуратном нагревании А разлагается с образованием газа В (бинарного соединения) и паров воды. При действии щёлочи на вещество А выделяется газ С.

17. Определите химический элемент X. В поле для ответа введите символ этого элемента.

Ответ

18. Определите общее число атомов в формульной единице вещества А.

Ответ

Число атомов =	9	(2 балла)
----------------	---	-----------

19. Определите вещества В и С. В поля для ответа введите формулы этих веществ.

Ответ

В	C	
N2O	NH3	

По 2 балла за каждую верную формулу. Итого 4 балла.

Всего за задания № 17-19 - 8 баллов.

Решение

Газ $C - NH_3$ (выделяется из раствора при действии щёлочи), тогда элемент X - N. Найдём отношение числа атомов элементов в A (в моли можно не переводить):

$$N(N): N(H): N(O) = (4.82 \cdot 10^{21}): (9.63 \cdot 10^{21}): (7.22 \cdot 10^{21}) = 2:4:3.$$

Формула $A-N_2H_4O_3$, это – нитрат аммония, NH_4NO_3 . В формульной единице – 9 атомов. Уравнение разложения NH_4NO_3 при нагревании

$$NH_4NO_3 = N_2O + 2H_2O$$
.

 Γ аз **B** – N_2O .

Задача 12 (№ 20-21)

Раствор хлорида некоторого металла X разделили на 4 пробирки и провели опыты, описанные в таблице ниже.

№ пробирки	Ход исследования	Наблюдения		
1	Добавили раствор тиоцианата (роданида) калия	Раствор приобрёл интенсивную кроваво-красную окраску		
2	Раствор подкислили соляной кислотой и добавили гранулы алюминия	Выделялся газ A , сначала медленно, но потом реакция ускорилась; раствор сильно разогрелся; бурая окраска раствора исчезла; через несколько секунд образовалась непрозрачная суспензия, содержащая частички простого вещества B тёмно-серого цвета, которые притягивались к магниту		
3	В раствор пропустили бесцветный газ С с резким запахом	Бурая окраска раствора исчезла, раствор практически полностью обесцветился; при добавлении к полученному раствору хлорида бария выпал осадок белого цвета		
4	В раствор пропустили бесцветный газ D с неприятным запахом	Бурая окраска раствора исчезла, раствор помутнел за счёт образования осадка простого вещества светло-жёлтого цвета		

20. Определите химический элемент **X**. В поле для ответа введите символ этого элемента.

Ответ

X	Fe	(2 балла)
---	----	-----------

21. Определите вещества **A–D**. В поля для ответа введите их молярные массы $(\Gamma/MOJE)$ с точностью до целых.

Ответ

A	В	C	D
2	56	64	34

По 2 балла за каждый верный ответ. Всего за задания № 20–21 – 10 баллов.

Всероссийская олимпиада школьников. Химия. 2025–2026 уч. г. Муниципальный этап. 10 класс

Решение

Изменения в пробирке № 1 говорят о том, что исходный хлорид – FeCl₃.

Пробирка № 2. В растворе $FeCl_3$ среда кислая из-за гидролиза, поэтому сначала алюминий растворяется с выделением H_2 (газ **A**, M=2 г/моль), затем происходит восстановление $FeCl_3$ алюминием до Fe (простое вещество **B**, M=56 г/моль).

Пробирка № 3. FeCl₃ восстанавливается сернистым газом SO₂ (газ C, M = 64 г/моль): 2FeCl₃ + SO₂ + 2H₂O = 2FeCl₂ + H₂SO₄ + 2HCl.

Пробирка № 4. FeCl₃ восстанавливается сероводородом H_2S (газ **D**, M = 34 г/моль): $2FeCl_3 + H_2S = 2FeCl_2 + S \downarrow + 2HCl$.