11 КЛАСС (авторы Тарасова И.В., Филатова Е.А.)

1. В насыщенном растворе над осадком галогенида свинца(II) устанавливается равновесие:

$$PbHal_{2 (TB.)} \rightleftarrows Pb^{2+} + 2Hal^{-}$$

Константа равновесия для данного процесса: $\Pi P(PbHal_2) = [Pb^{2+}][Hal^-]^2$

2. Пусть растворимость иодида свинца(II) равна s моль/л, тогда в соответствии с уравнением в дистиллированной воде $[Pb^{2+}] = s$ моль/л, а $[I^-] = 2s$ моль/л. Преобразуем выражение для константы равновесия:

$$\Pi P(PbHal_2) = [Pb^{2+}][I^{-}]^2 = s \cdot (2s)^2 = 4 \cdot s^3$$
$$s = \sqrt[3]{\frac{\Pi P}{4}} = \sqrt[3]{\frac{1.1 \cdot 10^{-9}}{4}} = 6.5 \cdot 10^{-4} \text{ M}$$

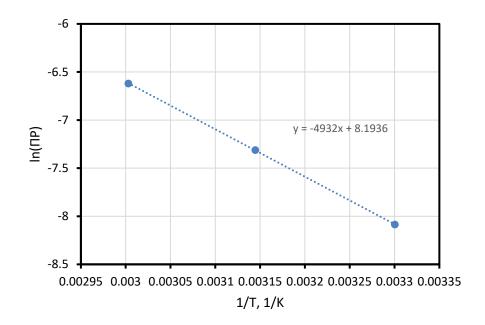
3. Нитрат свинца(II) — сильный электролит, диссоциирующий нацело, поэтому в растворе будут дополнительно присутствовать ионы свинца(II) из растворимой соли. Их наличие будет смещать гетерогенное равновесие влево, что приведет к уменьшению растворимости хлорида свинца(II).

В растворе соляной кислоты реализуется процесс комплексообразования, в результате чего растворимость хлорида свинца(II) увеличивается:

$$PbCl_2 + 2HCl = H_2[PbCl_4]$$

- 4. Это задание в баллах не оценивается.
- **5.** Растворимость хлорида свинца(II) можно рассчитать по результатам комплексонометрического титрования аликвот насыщенного раствора при разных температурах:

$$s = c(PbCl_2) = \frac{c(\exists \bot TA) \cdot V_{cp}(\exists \bot TA)}{V(a$$
ликвоты)


Справочные данные по растворимости хлорида свинца(II) в интервале температур 30-60 °C приведены в таблице:

t/°C	<i>T /</i> K	s·10 ² / M	t/°C	T / K	s·10 ² / M
30	303	4.254	46	319	5.596
31	304	4.332	47	320	5.686
32	305	4.411	48	321	5.778
33	306	4.491	49	322	5.869
34	307	4.572	50	323	5.962
35	308	4.653	51	324	6.056
36	309	4.735	52	325	6.150
37	310	4.818	53	326	6.245
38	311	4.901	54	327	6.341
39	312	4.985	55	328	6.438
40	313	5.070	56	329	6.536
41	314	5.156	57	330	6.634
42	315	5.242	58	331	6.734
43	316	5.330	59	332	6.834
44	317	5.418	60	333	6.935
45	318	5.506			

6. Для трёх произвольных температур таблица 2 имеет вид:

Тср., К	303	318	333
$1/T_{\rm cp.},{ m K}^{-1}$	3.30 · 10-3	3.14· 10-3	3.00 · 10-3
s(PbCl₂), моль/л	0.0425	0.0551	0.0693
ΠP(PbCl ₂)	3.08 · 10-4	6.68 · 10-4	1.33 · 10-3
ln(ΠP(PbCl ₂))	-8.086	-7.311	-6.620

По полученным данным построим график зависимости $ln(\Pi P(PbCl_2))$ от 1/T:

Угловой коэффициент полученного графика после умножения на -R даёт величину ΔH° :

$$\Delta H^{\circ} = 4932 \cdot 8.314 = 41000 \; \text{Дж/моль} = 41.0 \; \text{кДж/моль}$$

Свободный член после умножения на R даёт величину ΔS :

$$\Delta S^{\circ} = 8.1936 \cdot 8.314 = 68.1$$
 Дж/(моль·К)

7. Растворимость при 298 К может быть вычислена из величины $\ln(\Pi P)$, полученной посредством экстраполяции графика к 1/298, или из полученных выше ΔH° и ΔS° :

$$\ln(\Pi P) = -\frac{\Delta H^{\circ}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$

Величина ПР при 298 К составляет $2.32 \cdot 10^{-4}$. Растворимость при этой температуре рассчитывается аналогично вопросу 2:

$$s = \sqrt[3]{\frac{\Pi P}{4}} = \sqrt[3]{\frac{2.32 \cdot 10^{-4}}{4}} = 3.9 \cdot 10^{-2} \text{ M}$$

Система оценивания

Теоретическая часть:

- Уравнение реакции 1 балл
 Выражение для константы равновесия 2 балла
- 2. Расчет растворимости в воде 4 балла

3. Объяснение для раствора $Pb(NO_3)_2 - 3$ балла Объяснение для раствора HCl - 3 балла

Практическая часть:

4. Точность определения растворимости оценивается на основе относительной погрешности определения *s* по сравнению со справочной величиной:

Растворимость PbCl ₂ (для каждой температуры)				
Δs/s _{cπp} , %	Баллы			
≤5	15			
≤ 7	12			
≤ 9	9			
≤11	6			
≤ 13	3			
≤ 15	0			

Ошибка в пересчёте экспериментально определённых объёмов в величину растворимости (s) однократно штрафуется 10 баллами.

5. Правильность расчета ПР(PbCl₂)

3 значения по 2 балла — 6 баллов

6. Наличие на графике обязательных элементов:

Полписи осей

2 оси по 1 баллу — 2 балла

Соблюдение масштаба

2 балла

7. Расчёт термодинамических параметров (безотносительно точности определения растворимости при каждой температуре):

Расчёт ΔH° 4 балла

Расчёт ΔS° 4 балла

8. Расчёт растворимости при 298 К (на основе полученной участником графической зависимости или величин ΔH° и ΔS° 4 балла

ИТОГО: 80 баллов

Штрафные баллы: если участнику понадобится дополнительное количество реактива или замена разбитой посуды, то долив реактива или замена посуды производится со штрафом 4 балла.