10 класс

10.1. Прямые, содержащие стороны данного остроугольного треугольника T, покрасили в красный, зелёный и синий цвета. Затем эти прямые повернули вокруг центра описанной окружности данного треугольника по часовой стрелке на угол 120° (прямая сохраняет свой цвет после поворота). Докажите, что три точки пересечения одноцветных прямых являются вершинами треугольника, равного T. (Л. Емельянов)

Решение. Пусть ABC— данный треугольник, O— центр его описанной окружности, D, E, F— середины его сторон BC, CA, AB соответственно, так что DEF подобен ABC с коэффициентом 1/2 и $OD \perp BC$, $OE \perp CA$, $OF \perp AB$.

Комментарий. Пусть ABC—данный треугольник, A'B'C'—треугольник после поворота, $A''=BC\cap B'C'$ и т.д. Оцениваются (но не суммируются) такие продвижения:

Доказано, что (AA'B''C'') есть окружность (или эквивалентное) — 1 балл.

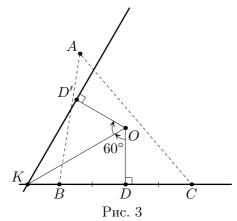
Доказано подобие $A''B''C'' \sim ABC$ (или эквивалентное) — 2 балла.

Доказано, что (AA'B''C''O) есть окружность (или эквивалентное) — 2 балла.

Доказано, что CB'A'' — равносторонний (или эквивалентное) — 1 балл.

Только счёт углов (угол между соответствующими прямыми равен 60° и т.п.) — баллы не добавляются.

Пусть при повороте вокруг O по часовой стрелке на угол 120° точка D переходит в D'. При таком повороте прямая BC переходит в перпендикуляр к OD', проходящий через D', пусть этот перпендикуляр пересекает BC в точке K (см. рис. 3). Видим, что прямоугольные треугольники ODK и OD'K равны (симметричны относительно OK), и поэтому $\angle KOD = \angle DOD'/2 = 60^{\circ}$, значит, в прямоугольном треугольнике KOD верно OK = 2OD. Иными словами, K получается из D в результате поворотной гомотетии: поворота с центром O по часовой стрелке на угол 60° и последующей гомотетии с центром O и коэффициентом O. Аналогичный результат получим



для других точек L, M пересечения одноцветных прямых. Таким образом, треугольник KLM получается из DEF поворотной гомотетией с центром O и коэффициентом 2. Тогда KLM подобен DEF с коэффициентом 2, следовательно, равен ABC.

10.2. У 100 школьников есть стопка из 101 карточки, которые пронумерованы числами от 0 до 100. Первый школьник перемешивает стопку, затем берёт сверху из получившейся стопки по одной карточке, и при каждом взятии карточки (в том числе при первом) записывает на доску среднее арифметическое чисел на всех взятых им на данный момент карточках. Так он записывает 100 чисел, а когда в стопке остаётся одна карточка, он возвращает карточки в стопку, и далее всё то же самое, начиная с перемешивания стопки, проделывает второй школьник, потом третий, и т.д. Докажите, что среди выписанных на доске 10000 чисел найдутся два одинаковых.

(А. Грибалко)

Решение. На 1-м шаге у каждого из 100 человек было выписано одно из чисел множества $A_1=\{0,1,2,\dots,100\}.$

На 2-м шаге — одно из чисел множества $A_2=\left\{\frac{1}{2},\frac{2}{2},\frac{3}{2},\dots,\frac{199}{2}\right\}.$

На 100-м шаге выписано одно из чисел множества $A_{100}=$ = $\left\{\frac{S}{100},\frac{S-1}{100},\frac{S-2}{100},\dots,\frac{S-100}{100}\right\}$, где $S=\frac{100\cdot 101}{2}-\text{сумма}$ всех чисел (а вычитается—число на оставшейся в конце карточке).

Видим, что $A_1\cup A_2=\left\{0,\frac{1}{2},\frac{2}{2},\frac{3}{2},\dots,\frac{199}{2},\frac{200}{2}\right\}$, так что $|A_1\cup A_2|=201$. Далее, $|A_{100}|=101$, но числа $50-\frac{1}{2}$, 50, $50+\frac{1}{2}$ принадлежат $A_2\cap A_{100}$, значит, $|A_1\cup A_2\cup A_{100}|\leqslant 201+101-3=299$.

Итак, мы показали, что 300 чисел, выписанных на 1-м, 2-м и 100-м шагах, могут принимать не более 299 различных значений. Следовательно, какие-то два из них равны.

Комментарий. Зафиксируем следующие продвижения:

- (а) Выбираемые на первом шаге карточки различны.
- (б) На втором шаге получаются целые и полуцелые средние арифметические.
 - (в) Остающиеся после последнего шага карточки различны.
- (г) Не может быть такого, что кто-то взял на первом шаге карточку 50, и у кого-то после последнего шага осталась карточка 50.

Тогда следующие комбинации продвижений оцениваются следующим образом:

- (a)+(b)+(b) без дальнейших продвижений 0 баллов.
- (a)+(б), при этом найдено количество элементов в объединении множеств возможных средних арифметических на 1 и 2 mare 1 балл.
 - (a)+(b)+(c)-1 балл.
 - $(a)+(B)+(\Gamma)-1$ балл.
 - (a)+(b)+(b)+(c)-1 балл.
- (a)+(b)+(b)+(c), при этом найдено количество элементов в объединении множеств возможных средних арифметических на 1 и 2 шаге 2 балла.

Задача решена для набора чисел 1, 2, ..., 101, но не сведена к исходной — 6 баллов.

10.3. Даны натуральные числа a и b такие, что $a\geqslant 2b$. Существует ли многочлен P(x) степени больше 0 с коэффициентами из множества $\{0,1,2,\ldots,b-1\}$ такой, что P(a) делится на P(b)?

 $(\mathit{T. Kopomченкo})$

Ответ. Существует при b > 1.

Решение. Легко видеть, что если b=1, то всякий многочлен с коэффициентами от 0 до b-1 является нулевым.

Пусть b>1. Представим a-b в b-ичной записи: $a-b=c_nb^n+\ldots+c_1b+c_0$, где $c_i\in\{0,1,2,\ldots,b-1\}$. Поскольку $a-b\geqslant b$, в этой записи $n\geqslant 1$.

Покажем, что $P(x) = c_n x^n + \ldots + c_1 x + c_0$ удовлетворяет условию. Действительно, для любого многочлена f с целыми коэффициентами f(a) - f(b) делится на a - b. Значит, P(a) - P(b) делится на a - b = P(b). Но тогда и P(a) = (P(a) - P(b)) + P(b) делится на P(b).

Комментарий. В решении упущен случай b=1-баллы не снимаются.

В решении, аналогичном официальному, не поясняется, почему полученный многочлен непостоянный—снимается 1 балл.

Замечено только, что P(b) есть представление числа в b-ичной системе счисления — 1 балл.

Доказано только, что для a=bq+r (деление a на b с остатком), и для многочлена P(x)=(q-1)x+r число P(a) делится на P(b)-1 балл.

Предъявлен многочлен из официальных решений, но не доказано, почему он подходит — 3 балла.

Многочлен P(x) получен из b-ичного представления числа a, после чего утверждается, что многочлен P(x)-x подходит; при этом упущен случай, что коэффициент при x может оказаться равен -1-4 балла.

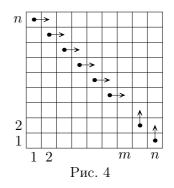
10.4. С одной стороны теннисного стола выстроилась очередь из n девочек, а с другой — из n мальчиков. И девочки, и мальчики пронумерованы числами от 1 до n в том порядке, как они стоят. Первую партию играют девочка и мальчик с номерами 1, а далее после каждой партии проигравший встаёт в конец своей очереди, а победивший играет со следующим. Через некоторое время оказалось, что каждая девочка сыграла ровно одну партию с каждым мальчиком. Докажите, что если n нечётно, то в последней партии играли девочка и мальчик с нечётными номерами. (A. Γ рибалко)

Решение. Будем изображать турнир в виде таблицы $n \times n$,

в которой и столбцы, и строки пронумерованы числами от 1 до n. Столбцы будут соответствовать девочкам, а строки — мальчикам. Тогда каждая партия задаётся клеткой, координаты которой соответствуют номерам девочки и мальчика, играющих в этой партии. Поставим сначала фишку в клетку (1,1). После победы девочки фишка будет перемещаться вверх, а в случае победы мальчика — вправо. При этом если фишка доходит до края таблицы, то из последней строки при движении вверх она перемещается в первую строку, а из последнего столбца при движении вправо — в первый столбец. Тогда условие задачи равносильно тому, что фишка обошла все клетки таблицы, побывав в каждой ровно по одному разу.

Раскрасим клетки таблицы в n цветов по диагоналям, идущим вправо-вниз: первую диагональ — в первый цвет, вторую — во второй, . . . , n-ю диагональ — в n-й цвет, а следующие диагонали — снова в цвета с первого по (n-1)-й. Заметим, что после каждой партии номер цвета клетки, в которой находится фишка, увеличивается на 1 по модулю n. Так как всего в турнире было проведено n^2 партий, что кратно n, то в конце фишка находится в клетке n-го цвета, то есть на главной диагонали (далее, говоря «диагональ», мы будем иметь в виду именно эту диагональ). Пусть финальная клетка в маршруте фишки расположена в столбце с номером m, тогда требуется доказать, что число m нечётно.

Из верхней клетки диагонали фишка не могла пойти вверх, так как уже была в клетке (1,1). Значит, если эта клетка не финальная, то из неё фишка пошла вправо. Тогда и из следующей клетки диагонали она сделала ход вправо, и т.д. до клетки, расположенной в столбце с номером m-1. Аналогично из клеток диагонали, находящихся в столбцах с но-



мерами от m+1 до n, фишка ходила вверх (см. рис. 4). Пусть первая клетка диагонали, в которую попала фишка, находится в столбце с номером k. Рассмотрим путь фишки от начальной

клетки до неё. Все пути от клеток первого цвета до следующей клетки n-го цвета должны быть такими же, как и рассматриваемый путь, а именно, каждый такой путь получается из другого смещением на вектор (1,-1). Действительно, если бы фишка из клетки (a-1,b) сделала ход вверх, а из клетки (a,b-1) — вправо, то в клетку (a,b) она бы не попала, а если из этих клеток она делала ходы вправо и вверх соответственно, то попала бы в одну клетку дважды; поэтому из каждых двух таких клеток фишка делала одинаковые ходы.

Без ограничения общности будем считать, что k < m. Клетки диагонали, находящиеся левее финальной клетки, будем называть левыми, а находящиеся правее — правыми. Пронумеруем левые клетки числами от 1 до m-1, а правые — от 1 до n-m (и те, и другие нумеруем, двигаясь вправо-вниз). Посмотрим, в каком порядке фишка обходила эти клетки. С левых клеток она смещалась на k клеток вправо (поскольку с них в клетку первого цвета она делала ход вправо), а с правых клеток — на k-1 клетку вправо. Значит, для левых клеток нам важен лишь остаток от деления номера на k, а для правых — от деления на k-1. При этом, если правых клеток меньше k, то можно увеличить n на 2(k-1), добавив 2(k-1) правых клеток; это не повлияет на дальнейшие рассуждения. Для удобства заменим все номера клеток на соответствующие остатки, причём для правых клеток вместо остатка 0 будем использовать число k-1.

Пусть число m при делении на k даёт остаток d. Тогда первый переход с левых клеток на правые был с числа 0 на число k-d, и в этот момент все клетки с нулём в левой части были посещены. На диагонали остались только числа от 1 до k-1. Дальше цепочка переходов между правыми и левыми клетками выглядит так: $k-d\to\cdots\to d$. В этой цепочке каждое число от 1 до k-1 встречается два раза, начинается она на правых клетках, а заканчивается на левых. Переходы с правых клеток на левые будем называть переходами $nepeoro\ muna$, а с левых на правые — $emoporo\ negeta$. Тогда в цепочке k-1 переход первого типа и k-2 перехода второго, и они чередуются.

Докажем, что каждые два числа в цепочке, симметричные относительно её центра, дают в сумме k. Для крайних чисел это

верно. Каждые два симметричных перехода имеют один тип, поэтому в них по модулю k-1 (для переходов первого типа) или по модулю k (для переходов второго типа) прибавляется одно и то же число. Значит, сумма следующих двух симметричных чисел (которые ближе к центру цепочки) снова равна либо 1 по модулю k-1, либо 0 по модулю k. Но сумма самих чисел не меньше 2 и не больше 2k-2, поэтому она может быть равна только k.

Предположим, что число m чётно, и рассмотрим два случая.

- 1) Число k нечётно. Тогда центральный переход в цепочке имеет второй тип. У правой нижней клетки диагонали нечётный номер, поскольку число n-m нечётно, а k-1 чётно. Левая верхняя клетка диагонали тоже имеет нечётный номер, поэтому при переходе первого типа чётность числа меняется. Пусть с числа 1 переход первого типа происходит на число 2s. Тогда по модулю k-1 переходы первого типа выглядят так: $1\to 2s$, $2\to 2s+1$, ..., $k-1\to 2s+k-2$. Суммы чисел в этих парах являются последовательными нечётными числами, поэтому при делении на k-1 они дают все нечётные остатки по два раза. В частности, есть переход, в котором сумма чисел равна 1 по модулю k-1. Как показано выше, эта сумма равна k. Но тогда для этого перехода симметричный ему тоже имеет первый тип и содержит те же самые числа, то есть один из переходов повторился, чего быть не должно.
- 2) Число k чётно. Тогда у центрального перехода в цепочке первый тип. Последняя левая клетка имеет нечётный номер, так как число m-1 нечётно, а k чётно. У первой правой клетки тоже нечётный номер, значит, при переходе второго типа чётность числа не меняется. Аналогично первому случаю можно показать, что среди них найдётся переход, пара чисел в котором даёт сумму k, и получаем такое же противоречие.

Замечание. После описания того, в каком порядке фишка обходит клетки диагонали (с левых сдвигается вправо на k клеток, а с правых — на k-1) решение можно завершить по-другому.

Пронумеруем все клетки диагонали числами от 1 до n слева направо. Проведём стрелку из каждой клетки в клетку, в кото-

рой фишка появляется в следующий раз; эти стрелки образуют путь, начинающийся в клетке k и заканчивающийся в клетке m. Добавим стрелку, ведущую из клетки m в клетку k; получим цикл, проходящий по всем клеткам диагонали.

Этот цикл определяет перестановку σ чисел $1,2,\ldots,n$, где $\sigma(i)$ — это номер клетки, в которую ведёт стрелка из клетки i. Эта перестановка — цикл на n элементах. Напомним, что перестановка, являющаяся циклом на b элементах, имеет чётность, отличную от чётности числа b. Поэтому перестановка σ чётна.

С другой стороны, σ получается как композиция (последовательное применение) двух перестановок: τ , которая отправляет $x\mapsto x+(k-1)$ mod n, и θ , действующей как $k\mapsto (k+1)\mapsto (k+2)\mapsto \ldots\mapsto (m+k-1)\mapsto k$. Перестановка τ состоит из нескольких циклов одинаковой длины; поэтому эти циклы нечётной длины, и потому τ чётна. Значит, и θ чётна, что как раз и означает, что m нечётно.

Комментарий. В решении произведён переход к таблице $n \times n - 0$ баллов.

Доказано только, что номера имеют одинаковую чётность — 0 баллов.

Сформулировано и доказано только, что сумма номеров даёт остаток 1 при делении на n; иными словами, что последняя клетка будет на главной диагонали — 1 балл.

Доказано, что во всех клетках одной диагонали, кроме главной, ходы были одинаковы — 1 балл.

Доказано, что все ходы из главной диагонали до конечной клетки направлены в одну сторону, а после — в другую — 0 балиов

Доказано, что последняя клетка на диагонали, а также что разница между соседними посещениями клеток главной диагонали равна k или k+1-3 балла. Это продвижение не суммируется с предыдущими.