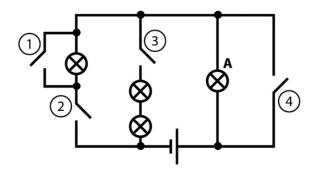

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. ШКОЛЬНЫЙ ЭТАП. 10 класс


Критерии и ответы

Тестовые задания

- **1.** Радиус окружности *R*, описываемой концом минутной стрелки, в 2 раза больше радиуса окружности *r*, описываемой концом часовой стрелки механических часов. Чему равно отношение модуля вектора средней скорости конца минутной стрелки к модулю вектора средней скорости конца часовой стрелки на интервале времени от 12:00 до 18:00 одних и тех же суток?
 - 1) 60
 - 2) 120
 - 3) 0
 - 4) 2
- **2.** В доске высверлили небольшую ямку и вставили в неё шар (см. рисунок). Под каким минимальным углом α к плоскости стола должна быть наклонена доска, чтобы шар выпал из ямки? Радиус шара в два раза превышает глубину ямки.

- 1) 30°
- 2) 45°
- 3) 60°
- 4) 90°
- **3.** На рисунке показана схема электрической цепи. Какой ключ (или одновременно несколько ключей) нужно замкнуть, чтобы лампочка A светилась наиболее ярко?

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Школьный этап. 10 класс

- 1) только 2
- 2) только 3
- 3) 1 и 2 одновременно
- 4) 2 и 3 одновременно
- 5) 2 и 4 одновременно
- **4.** Точечный источник света расположен на расстоянии 1 метр от плоского зеркала. Не трогая источник, зеркало передвигают так, что расстояние между источником и зеркалом увеличивается в два раза, при этом плоскость зеркала остаётся параллельной своему первоначальному положению. Найдите расстояние между новым и первоначальным положениями изображения.
 - 1) 50 см
 - 2) 1 m
 - 3) 2 m
 - 4) 3 m
- 5. В теплоизолированный сосуд, содержащий 400 г льда и 300 г воды, находящихся в состоянии теплового равновесия, положили алюминиевый шар массой 2 кг, разогретый до температуры 150 °C. Удельная теплоёмкость льда 2100 Дж/(кг⋅°С), удельная теплоёмкость воды 4200 Дж/(кг⋅°С), удельная теплоёмкость алюминия 920 Дж/(кг⋅°С), удельная теплота плавления льда 340 кДж/кг, удельная теплота парообразования воды при температуре кипения 2,3 МДж/кг. Что будет находиться в сосуде после установления теплового равновесия?
 - 1) вода и алюминий
 - 2) вода, лёд и алюминий
 - 3) вода, водяной пар и алюминий
 - 4) водяной пар и алюминий

Ответы:

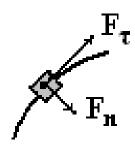
№ задания	1	2	3	4	5
Ответ	3	3	3	3	1
Балл	2 балла				

Задания с кратким ответом

Задачи 6-7

Водитель едет на автомобиле по прямым заснеженным улицам города, поворачивая на нужных перекрёстках на 90° . При поворотах он всегда движется по дуге окружности радиусом 50 м, колёса автомобиля при совершении поворотов никогда не проскальзывают. Ускорение свободного падения 10 м/c^2 , коэффициент трения колёс о покрытие заснеженной дороги 0,2.

- 6) На первом перекрёстке на светофоре горел зелёный свет, и водитель прошёл поворот, не изменяя модуль скорости автомобиля. Какое максимальное значение могла иметь эта скорость? Ответ приведите в м/с, округлив до целого числа. (4 балла)
- 7) На втором перекрёстке на светофоре горел красный свет, и водитель был вынужден остановить машину. Но как только зажёгся зелёный сигнал, автомобиль начал разгоняться, равномерно увеличивая модуль скорости и одновременно совершая поворот. На какой максимальной скорости автомобиль может выйти из поворота? Ответ приведите в м/с, округлив до десятых долей. (6 баллов)


Решение:

6) Условие на граничные значения для проскальзывания автомобиля:

$$\mu mg = m \frac{v^2}{R}$$

Откуда:
$$v = \sqrt{\mu gR} = 10,0 \left(\frac{M}{c}\right)$$

7) Сила трения покоя $F_{\tau p}$, действующая на автомобиль, раскладывается на векторную сумму двух взаимно перпендикулярных составляющих: тангенциальная — F_{τ} и нормальная — F_n (на рисунке изображён «вид сверху»). Тангенциальная составляющая силы трения остаётся постоянной в процессе разгона автомобиля (по условию):

$$F_{ au} = m a_{ au} = m rac{v^2}{2 \varphi_R}$$
, (1), где $\varphi = \pi/2$.

Нормальная составляющая силы трения увеличивается по мере разгона:

$$F_n = ma_n = m\frac{v^2}{R} \tag{2}$$

Максимальная сила трения покоя: $F_{max} = \mu mg$ (3) Теорема Пифагора для треугольника сил: $F_{max}^2 = F_{\tau}^2 + F_n^2$ (4) Подставляя (1), (2), (3) в (4), получаем:

$$V_{max} = \sqrt{\frac{2\varphi\mu gR}{\sqrt{1+4\varphi^2}}} \approx 9.8 \left(\frac{M}{c}\right).$$

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Школьный этап. 10 класс

Ответ:

6)	7)	
10	[9,7-9,9]	

Максимум за задачу 10 баллов.

Задачи 8-9

Два шарика массами 200 г и 400 г движутся по гладкому столу перпендикулярно друг другу с одинаковыми по модулю скоростями 4 м/с. После частично упругого соударения лёгкий шар остановился, а тяжёлый продолжил движение.

- 8) Найдите скорость тяжёлого шара после удара. Ответ выразите в метрах в секунду, округлив до десятых долей. (4 балла)
- 9) Найдите отношение кинетической энергии, которую имел лёгкий шар до удара, к количеству теплоты, которая выделилась при соударении. Ответ округлите до целого числа. (3 балла)

Решение:

8) Запишем закон сохранения импульса при ударе в векторной форме:

 $\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p_2'}$, где $\overrightarrow{p_1}$ и $\overrightarrow{p_2}$ — импульсы шариков массой m и 2m, соответственно, до удара, а $\overrightarrow{p_2'}$ — импульс шарика 2m после удара.

Из векторного треугольника по теореме Пифагора: $(p_2')^2 = (p_1)^2 + (p_2)^2$. Пусть скорость шарика 2m после столкновения равна u, тогда:

$$(2mu)^2 = (mv)^2 + (2mv)^2$$
.

Тогда
$$u^2 = \frac{5}{4}v^2 \implies u = \frac{\sqrt{5}}{2}v \approx 4,5$$
 м/с.

9) Модуль количества выделившейся теплоты Q равен разнице кинетических энергий до и после соударения:

$$Q = \frac{mv^2}{2} + \frac{2mv^2}{2} - \frac{2mu^2}{2} = \frac{mv^2}{4}$$

Энергия шара m до удара $E_1 = \frac{mv^2}{2} \implies Q$ в 2 раза меньше, чем E_1

Ответ:

8)	9)
4,5	2

Максимум за задачу 7 баллов.

Задачи 10-12

Плоское зеркало движется относительно комнаты со скоростью 2 м/с в направлении, перпендикулярном плоскости зеркала. Источник света догоняет зеркало, двигаясь относительно комнаты со скоростью 3 м/с также перпендикулярно плоскости зеркала.

- 10) С какой скоростью движется изображение источника относительно комнаты? Ответ приведите в м/с, округлив до целого числа. (4 балла)
- 11) Верно ли, что скорости изображения и зеркала относительно комнаты совпадают по направлению? (2 балла)
- 12) При какой скорости источника относительно комнаты изображение было бы неподвижно относительно комнаты? Ответ приведите в м/с, округлив до целого числа. (4 балла)

Решение:

Направим координатную ось x перпендикулярно зеркалу. Так как зеркало всегда посередине между источником и изображением, для их координат можно записать:

$$(x_{\text{источник}} + x_{\text{изображение}})/2 = x_{\text{зеркало}}$$

Таким же соотношением будут связаны изменения координат, т.е. перемещения,

$$(\Delta x_{\text{источник}} + \Delta x_{\text{изображение}})/2 = \Delta x_{\text{зеркало}}$$

и скорости (точнее проекции скоростей на ось x):

$$V_{\text{источник}} + V_{\text{изображ}} = 2V_{\text{зеркало}}$$

Отсюда получаем, что скорость изображения равна w = 2u - v.

- 10) При u = 2 м/с, v = 3 м/с получим: w = 2u v = 1 м/с
- 11) Направления скоростей совпадают, если знаки их проекций одинаковы. Это так и есть.
- 12) Из условия 2u v = 0 получаем v = 2u = 4 м/с.

	•				
•		"	n	Δ	
•	,		n	•	

10)	11)	12)
1	верно	4

Максимум за задачу 10 баллов.

Задачи 13-14

В неидеальный калориметр помещают воду и лёд в равных по массе пропорциях при температуре 0 °С. Затем калориметр накрывают, чтобы исключить испарение, и помещают его в тёплую комнату, температура воздуха в которой 25 °С. Известно, что таяние льда полностью завершилось через 3 ч 20 мин после помещения калориметра в тёплую комнату. Можно считать, что количество теплоты, отдаваемое в единицу времени в окружающую среду, пропорционально начальной разности температур, если температура содержимого калориметра мало изменяется. Удельная теплоёмкость воды 4200 Дж/(кг·°С), удельная теплота плавления льда 330 кДж/кг.

- 13) За какое время сразу после таяния льда температура в калориметре поднимется на 1 °C? Ответ приведите в минутах, округлив до десятых долей. (4 балла)
- 14) Сколько времени займёт нагревание содержимого калориметра от 23 °C до 24 °C? Ответ приведите в минутах, округлив до десятых долей. (6 баллов)

Решение:

13) Мощность теплообмена между калориметром и окружающей средой пропорциональна разности температур $t_{\rm B}$ – t, где t – температура калориметра, $t_{\rm B}$ – температура воздуха. При плавлении льда t = t_0 = 0°C:

$$\frac{m\lambda}{\tau} = A(t_{\rm B} - t), A = \frac{m\lambda}{\tau(t_{\rm B} - t)},$$

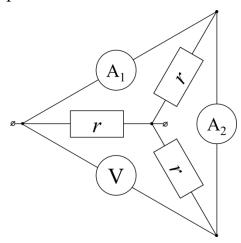
где m — масса льда, A — коэффициент пропорциональности. При нагревании воды массой 2m от 0° С до 1° С ($\Delta t = 1^{\circ}$ С) мощность теплообмена остаётся такой же, как и при плавлении льда.

$$C\Delta t \cdot 2m = A(t_{\mathrm{B}} - t_0)\Delta au_1 = m\lambda \frac{\Delta au_1}{ au}$$
 $\Delta au_1 = \frac{C\Delta t \cdot 2 au}{\lambda}.$ $\Delta au_1 = 5{,}09$ мин $pprox 5{,}1$ мин.

14) Если нагревать воду в калориметре от $t=23\,^{\circ}\text{C}$ до 24 $^{\circ}\text{C}$ ($\Delta t=1\,^{\circ}\text{C}$), потребуется время $\Delta \tau_2$:

$$\Delta \tau_2 = \Delta \tau_1 \frac{(t_{\rm B}-t_0)}{(t_{\rm B}-t)}.$$

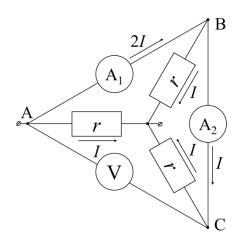
$$\Delta \tau_2 = 5.09 \ \text{мин} \ \cdot \frac{25-0}{25-23} \approx 63,6 \ \text{мин}.$$


Ответ:

13)	14)
5,1	63,6

Максимум за задачу 10 баллов.

Задачи 15-17


В электрической цепи, схема которой изображена на рисунке, амперметр A_1 показывает силу тока 1 А. Идеальный источник питания подключён к клеммам. Сопротивление каждого из резисторов равно r=3 Ом. Амперметры и вольтметр можно считать идеальными.

- 15) Определите показания амперметра A_2 . Ответ выразите в амперах, округлив до десятых долей. (4 балла)
- 16) Определите показания вольтметра. Ответ выразите в вольтах, округлив до целого числа. (2 балла)
- 17) Определите напряжение источника питания. Ответ выразите в вольтах, округлив до десятых долей. (2 балла)

Решение:

15) Учитывая, что ток через идеальный вольтметр не течёт, а сопротивление идеального амперметра пренебрежимо мало, потенциалы точек A, B и C равны. Значит, данное соединение резисторов аналогично параллельному соединению. Так как резисторы обладают одинаковым сопротивлением, токи через них одинаковы, обозначим их за I.

Всероссийская олимпиада школьников по физике. 2021—2022 уч. г. Школьный этап. 10 класс

Расставим токи в цепи: так как через вольтметр ток не течёт, через амперметр A_2 течёт ток I. Тогда через амперметр A_1 течёт ток 2I = 1 A. Значит, I = 0.5 A.

- 16) Так как потенциалы точек A, B и C равны, напряжение на вольтметре $U_V = 0~\mathrm{B}.$
- 17) Напряжение источника равно $U_0 = Ir = 1,5$ В.

Ответ:

15)	16)	17)
0,5	0	1,5

Максимум за задачу 8 баллов.

Всего за работу – 55 баллов.