
Задача 2.8.1. Натяжение (10 баллов). Два одинаковых однородных рычага массой m=7 кг и длиной 80 см каждый, шарнирно соединены с помощью легкого стержня и нитей, между которыми подвешен груз с такой же массой m. Определите, на каком расстоянии x от левого края верхнего стержня находится точка крепления нити, удерживающей систему в равновесии; чему равны силы натяжения всех трех

нитей и сила, действующая со стороны шарнира на верхний стержень. Для удобства, на рисунке стержни размечены на 8 равных частей. Точка крепления самой верхней нити к рычагу изображена условно. g = 10 H/kr.

Задача 2.8.2. Дорога доканала (10 баллов). Ярик и Прохор после кружка по физике отправились на прогулку вдоль берега длинного прямого канала. Ярик пошел пешком, а Прохор поехал на велосипеде. График зависимости расстояния *l* между ними от перемещения *s* Ярика приведен на рисунке.

Сначала мальчики двигались с постоянными скоростями, но устав, Ярик

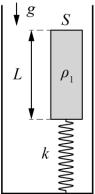
сделал привал, в конце которого позвонил Прохору и попросил его подъехать к нему, после чего продолжил движение с прежней скоростью в прежнем направлении. Прохор развернулся, и увеличив скорость более чем в два раза, направился к другу. В результате ребята встретились через 1 ч 55 мин после того как расстались. Определите:

- какой путь проехал Прохор с начала прогулки до встречи с Яриком;
- во сколько раз увеличил скорость Прохор после разворота;
- сколько времени Ярик отдыхал на привале;
- чему равна скорость Ярика;
- обоснуйте однозначность своих ответов.

²⁴ января на портале http://abitu.net/vseros **будет проведён онлайн-разбор решений задач первого тура**. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.

²⁶ января состоится онлайн-разбор решений заданий второго тура. Начало разбора:


Задача 2.8.3. Груз на пружинке (10 баллов). Груз плотности $\rho_1 = 0.80$ г/см³ прикреплен к

пружине с коэффициентом жесткости $k=50~{\rm H/m}$, нижний конец которой соединён с дном сосуда. Длина пружины в недеформированном состоянии $L_0=10~{\rm cm}$, высота груза $L=12,5~{\rm cm}$, площадь поперечного сечения груза $S=10~{\rm cm}^2$.

В сосуд начинают медленно наливать воду.

Найдите зависимость деформации Δx пружины от уровня h воды в сосуде. Плотность воды $\rho = 1{,}00$ г/см³, g = 10 Н/кг.

Укажите, при каких значениях h пружина растянута. Постройте график зависимости Δx от h, считая, что если пружина сжата то $\Delta x < 0$.

Задача 2.8.4. Глюк отлил (20 баллов). Однажды экспериментатор Глюк решил отлить оловянного солдатика. Для этого он положил в ковшик кусок оловянного сплава массой m = 150 г и поместил его на плитку постоянной мощности. Как только началось плавление металла, Глюк стал снимать зависимость его температуры t от времени τ (см. таблицу). Вскоре после перехода всего сплава в жидкую фазу экспериментатор выключил плитку.

По результатам измерений определите:

- 1. удельную теплоемкость c сплава;
- 2. мощность P плитки;
- 3. через какое время T, прошедшее после выключения плитки, сплав затвердел (полностью кристаллизовался).

Теплоемкостью ковшика и плитки можно пренебречь. Известно, что удельная теплота плавления сплава равна $\lambda=20~\mathrm{кДж/кг}.$

ſ	t, °C	238,0	238,2	237,7	238,3	238,1	240,4	243,2	246,1	248,0
	τ, c	0	8	15	27	35	42	45	48	50
ſ	t °C	246.9	244 7	242.0	239 1	238.0	238.2	237.8	238.0	

t, °C	246,9	244,7	242,0	239,1	238,0	238,2	237,8	238,0
τ, c	53	59	68	77	80	84	89	95

²⁴ января на портале http://abitu.net/vseros **будет проведён онлайн-разбор решений задач первого тура**. Начало разбора (по московскому времени):

⁷ класс – 11.00; 8 класс – 10.00; 9 класс – 12.00; 10 класс – 13.30; 11 класс – 15.00.