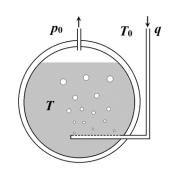
Теоретический тур, 11 класс

1. Куда упадет шарик?

С лодки, движущейся по течению реки, опускают в воду металлический шарик. Шарик падает на дно реки на расстоянии l_1 по горизонтали от места, где его опустили в воду. Если опустить в воду шарик с лодки, движущейся против течения, то шарик падает на дно на расстоянии l_2 ниже по течению. Для лодки, переплывающей реку по траектории, перпендикулярной течению реки, расстояние до точки падения на дно составляет l_3 .


1 Чему равно расстояние до точки падения на дно для лодки, движущейся в озере той же глубины, что и река?

2 Во сколько раз скорость лодки больше скорости течения?

Величина проекции скорости шарика на вертикальное направление при падении в воду равна нулю, закон зависимости силы сопротивления при движении шарика в воде неизвестен, все расстояния отсчитываются по горизонтали от места падения шарика в воду до места падения его на дно. Течение реки и ее глубина везде одинаковы. Двигатель лодки развивает постоянную силу тяги независимо от направления движения.

2. «Буль-буль»

В реакторе в водном растворе некоторого вещества в результате химической реакции выделяется тепло с мощностью $N=5~\mathrm{kBt}$. Для регулирования температуры в реактор через трубки с маленькими отверстиями, проложенными на дне реактора, продувается воздух. Давление воздуха, по-

дающегося в реактор, можно считать равным атмосферному $P_0=10^5~\Pi {\rm a}$, температуру – равной температуре помещения $T_0=22~{\rm ^{\circ}C}$. Определите объемный расход воздуха q, необходимый для поддержания в реакторе температуры $T< T_K$, где $T_K=100~{\rm ^{\circ}C}$ – температура кипения водного раствора при атмосферном давлении. Считайте $T_K-T\ll T_K$. Определите численное значение q для $T=95~{\rm ^{\circ}C}$.

Молярная теплота испарения при температуре T для воды известна: $\lambda=40~{\rm кДж/моль}$. Давление насыщенного водяного пара вблизи T_K меняется практически линейно с коэффициентом $\alpha=3.5~{\rm кПa/°C}$. Давление насыщенного пара над раствором в точности соответствует давлению насыщенного водяного пара. Теплотой, идущей на нагрев воздуха, можно пренебречь. Перепад давления на отводящей из реактора газ трубке пренебрежимо мал. В отсутствие подачи воздуха в реактор, теплообмена с окружающей средой нет.

3. Пластина с шайбой

Часть 1. Тонкий стержень из диэлектрика равномерно заряжен с линейной плотностью заряда λ . Точка A расположена на расстоянии h от стержня и равноудалена от его концов. Стержень виден из точки A под углом 2φ (рис. 1). Определите напряженность электрического поля в точке A.

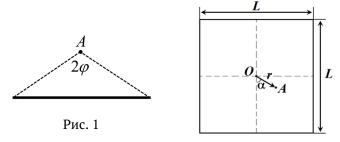


Рис. 2

Часть 2. Тонкая диэлектрическая квадратная пластина с длиной стороны L равномерно заряжена с поверхностной плотностью $\sigma>0$. В точку A, смещенную в плоскости пластины на малое расстояние $r\ll L$ относительно ее центра (т. O) под углом $\alpha=60^\circ$ к стороне квадрата (рис. 2), помещают маленькую гладкую диэлектрическую шайбу массы m с зарядом q<0. Шайбу отпускают без начальной скорости.

2.1 Определите величину и направление ускорения шайбы сразу после того, как ее отпустили.

2.2 Через какое время шайба впервые окажется на минимальном расстоянии от центра пластины?

Силы тяжести нет, пластина закреплена.

4. Виток в витке

Индуктивность кольца радиуса R, сделанного из тонкой проволоки, равна L.

1 Найдите индуктивность проволочного кольца, у которого все геометрические размеры в 2 раза больше.

Если в плоскости кольца радиуса R поместить сверхпроводящее колечко с вдвое меньшими геометрическими размерами так, чтобы плоскости колец и их центры совпадали (рис. 3), то индуктивность кольца радиуса R оказывается равной L_1 .

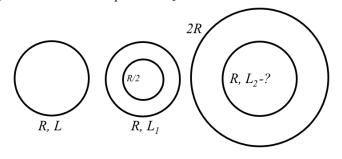


Рис. 3

2 Какой станет индуктивность кольца L_2 радиуса R при помещении его внутрь сверхпроводящего кольца со вдвое большими геометрическими размерами? Плоскости и центры колец во втором случае также совпадают.

5. Прозрачный слой

В шаре радиуса 2R из оптически прозрачного материала имеется сферическая полость радиуса R. Центры шара и полости совпадают. Внутри полости воздух. Из воздуха снаружи на поверхность шара падает луч света (рис. 4). При каких значениях угла падения луча на поверхность шара α луч проникнет внутрь

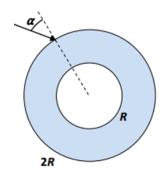


Рис. 4

полости? Рассмотрите два случая:

 $\fbox{1}$ Показатель преломления вещества шара постоянен и равен n=2.

2 Показатель преломления вещества шара линейно уменьшается при увеличении расстояния r от центра: $n(r)=2.5-0.5\frac{r}{R}, R\leq r\leq 2R$.

Показатель преломления воздуха считать равным $n_0=1$.