Задание 11.1. «Газировка (II)». Некоторые газы хорошо растворяются в жидкостях. Например, углекислый газ прекрасно растворяется в воде, что используется при приготовлении всем хорошо знакомой газировки. При постоянной температуре и не слишком больших давлениях количество газа, растворённого в жидкости, прямо пропорционально парциальному давлению этого газа над жидкостью (закон Генри)

$$v = \alpha V p$$
.

Здесь V — объём жидкости, p — парциальное давление газа, α — коэффициент, зависящий от температуры и измеряемый в моль/ $(\Pi a \cdot M^3)$.

- 1. Убедитесь, что сила трения поршня о стенки корпуса шприца мала по сравнению с силой атмосферного давления на поршень. Опишите, как вы это сделали.
- 2. Определите давление газа в бутылке газированной воды.
- 3. Определите величину а для углекислого газа и воды при комнатной температуре.

Считайте, что внутри бутылки находятся углекислый газ в газообразном состоянии и вода с растворённым в ней углекислым газом. При аккуратном открытии бутылки (не трясите её и не взбалтывайте перед этим!) за малый промежуток времени изменение концентрации газа в растворе незначительно.

Оборудование: 1) две бутылки минеральной газированной воды; 2) шприц 20 мл; 3) заглушка на шприц; 4) одноразовый стакан 200 мл; 5) одноразовая пластиковая тарелка и салфетки для поддержания рабочего места в чистоте.

Примечания:

- 1) Рекомендуется одну бутылку использовать для пробных экспериментов, а вторую для итоговых. Не рекомендуется трясти бутылку перед тем, как её открывать.
- 2) Если вода находится в спокойном состоянии, то концентрация растворённого в ней газа приходит в равновесное состояние за относительно длительное время, но, если воду перемешивать или взбалтывать (в закрытой бутылке), равновесное состояние устанавливается гораздо быстрее (несколько минут).

Постарайтесь работать аккуратно, чтобы не облить себя и соседей, не залить водой рабочее место! Одноразовая посуда и салфетки выданы Вам для поддержания рабочего места в порядке.

Возможное решение. Силу трения поршня о стенки можно считать несущественной по сравнению с силой давления газа на поршень. В этом можно убедиться, сжимая воздух в пустом шприце, закрытом заглушкой.

Откроем бутылку и аккуратно наберём из неё некоторое количество газировки в пустой шприц (около 5 мл). Сразу же заткнём кончик шприца заглушкой. Поскольку бутылка была только что открыта, то концентрация растворённого в ней углекислого газа соответствует давлению внутри бутылки.

Будем встряхивать шприц, чтобы ускорить переход системы в равновесное состояние. При этом поршень шприца должен иметь возможность свободно перемещаться, обеспечивая равенство давления внутри шприца атмосферному давлению p_0 . Газ, растворённый в воде, выделяется в газовую фазу при давлении, равном p_0 , и объём под поршнем увеличивается на величину объёма газа $V_{\rm r}$ (рис.1).

Спустя некоторое время установится равновесное состояние (10 минут — полное установление, 1 минута — установление с наблюдаемой точностью), при котором количество растворённого углекислого газа будет соответствовать p_0 , а давление углекислого газа под поршнем равно p_0 .

Для порции воды, набранной в шприц из бутылки, $\nu_0 = \alpha V_{\rm B} p$, где $V_{\rm B}$ — объём воды, набранной в шприц, ν_0 — количество растворённого в ней газа, p_0 — давление газа в бутылке.

После установления равновесия в воде в растворённом виде находится $\nu_{_{\rm B}}=\alpha V_{_{\rm B}}p_{_0}$ моль газа, в газовой фазе $\nu_{_{\Gamma}}=\frac{V_{_{\Gamma}}p_{_0}}{RT}$. Приравнивая $\nu_{_0}=\nu_{_{\rm B}}+\nu_{_{\Gamma}}$, получаем:

$$\alpha V_{\mathrm{B}} p = \alpha V_{\mathrm{B}} p_{0} + \frac{V_{\Gamma} p_{0}}{RT},$$

откуда

$$\alpha = \frac{V_{\Gamma} p_0}{RTV_{\rm B} (p - p_0)}.$$

Повторим измерения несколько раз, в каждом случае аккуратно открывая и тут же закрывая бутылку.

Теперь определим давление углекислого газа в бутылке. Эту процедуру лучше проделывать после предыдущих измерений с набором воды в шприц, чтобы минимизировать потери газа. Для этого выдвинем поршень шприца в положение 20 мл, установим заглушку и аккуратно поместим шприц внутрь бутылки с водой, сразу закрыв пробку бутылки. Встряхивая бутылку, периодически наблюдаем за положением поршня в шприце. Через некоторое время в бутылке установится равновесное давление p (10 минут — полное установление, 1 минута — установление с наблюдаемой точностью), а объём

воздуха в шприце уменьшится от первоначального значения $V_1 = 20\,\mathrm{mm}$, до некоторого значения $V_2 = V_1 p / p_0$ (рис.2).

Отсюда $p = p_0 V_1 / V_2$.

Отметим, что при выполнении части работы, связанной с помещением шприца в бутылку, потери газа становятся заметными (по нашим данным давление при повторных измерениях уменьшается примерно на 5% при каждом последующем измерении), поэтому это измерение есть смысл с учётом ограниченного количества бутылок выполнять однократно.

Приведём результаты измерений: $V_1 = (20,0\pm0,5)\,\mathrm{мл},$ $V_2 = (8,5\pm0,5)\,\mathrm{мл},$ $p = (2,4\pm0,2)\,\mathrm{атм}.$

Измерения объёма газа под поршнем с целью определения α : T=298K,

№	$V_{\scriptscriptstyle m B}$, мл	V_{Γ} , мл	$lpha$, 10^{-4} моль / $\left(\Pi a \cdot {\it m}^3 ight)$
1	2	1.5	2.15
2	4	3	2.15
3	6	5	2.39
4	7.5	7	2.67
5	9.5	8.5	2.56

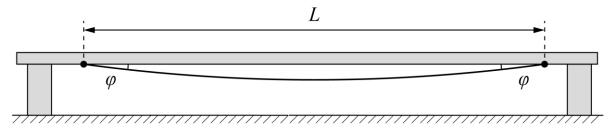
Оценка систематической погрешности определения α :

$$\frac{\Delta \alpha}{\alpha} \approx \sqrt{\left(\frac{\Delta V_{\Gamma}}{V_{\Gamma}}\right)^{2} + \left(\frac{\Delta V_{B}}{V_{B}}\right)^{2} + \left(\frac{\Delta (p - p_{0})}{(p - p_{0})}\right)^{2}} \approx 0,20.$$

Случайная погрешность для α по данным таблицы: $\Delta \alpha \approx 0.18 \cdot 10^{-4}$ моль/ $\left(\Pi a \cdot m^3\right)$ Окончательно $\alpha = \left(2.4 \pm 0.7\right) \cdot 10^{-4}$ моль/ $\left(\Pi a \cdot m^3\right)$.

Отметим, что на самом деле давление в бутылке складывается из парциального давления воздуха и углекислого газа. Поскольку изначальное соотношение их в открытой бутылке над поверхностью воды неизвестно, то для того, чтобы корректно рассчитать парциальное давление углекислого газа в бутылке, соответствующее установившейся концентрации растворенного газа, необходимо сделать следующую процедуру измерения давления. Немного отлить из бутылки воду, поместить в нее заткнутый затычкой шприц с объемом воздуха в 20 мл, нажать на бутылку, выгнав практически весь газ из нее, и закрыть бутылку. После этого необходимо потрясти бутылку. Оставшийся в бутылке газ сильно расширится, так как бутылка примет несжатую форму, и тогда парциальным давлением воздуха в конечном состоянии можно будет пренебречь. Поршень шприца при этом смещается на отметку 9.5-10 мл, что соответствует давлению в 2.0-2.1 атмосфер. В этом случае, получаемое значение константы растворимости будет ближе к табличному.

Задание 11.2. Упругая лента. Изгиб подвешенной за концы резиновой ленты определяется при равновесии упругих сил и силы тяжести. Для растянутой ленты, линейную плотность которой можно считать постоянной, её натяжение $T = ES\Delta L/L$, , где E модуль Юнга, S и L площадь сечения и длина ленты в нерастянутом виде, ΔL её удлинение. Закрепим концы ленты на одной горизонтали на расстоянии, равном её длине L в нерастянутом виде (рис.1). Провисшая под собственным весом лента образует с горизонталью некоторый угол φ , а середина ленты ниже этой горизонтали на некоторое расстояние h, называемое стрелой прогиба.



ЗАДАНИЕ

- 1. При помощи предложенного оборудования, измерьте стрелы прогиба h не менее чем для 10 значений длины ленты в **ненатянутом виде** L в диапазоне от 30 до 120 см. Результаты представьте в виде таблицы и графика h(L).
- 2. Используя полученные вами в п.1 экспериментальные результаты, считая, что $h = A \cdot L^n$, при использовании графической обработки, определите значение n (n не обязательно целое число). Сравните полученный результат с теоретической моделью по п.1. Оцените погрешность определения n.
- 3. При φ <<1 или h << L можно считать, что лента имеет постоянную линейную плотность и растянута по дуге окружности. Выведите в этом приближении теоретическое выражение для зависимости h от L, считая заданными: плотность резины ρ , модуль Юнга E, ускорение свободного падения g. В пределе малых углов можно использовать следующие приближения:

$$\sin \varphi \cong \varphi - \varphi^3/6$$
; $\cos \varphi \cong 1 - \varphi^2/2$; $\tan \varphi \cong \varphi + \varphi^3/3$.

Сравните полученную формулу с результатом, полученным в п.2

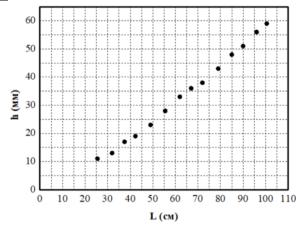
4. Используя теоретическую зависимость, выведенную Вами в п.3 и результаты, полученные в п.1, определите значение модуля Юнга. Плотность резины $\rho = 1,25 \text{ г/см}^3$, ускорение свободного падения $g = 9,8 \text{ м/c}^2$. Оцените погрешность определения E.

Оборудование: дюралевый уголок длиной 120 см; два бруска 15х10х3 см как опоры; тонкая резиновая лента длиной 120 см и шириной 2-3 см (отрезать от резинового медицинского бинта); два зажима для фиксации ленты на уголке (из гвоздя и кольцевой «денежной» резинки, или короткая деревянная линейка и канцелярская клипса); мерная лента; миллиметровая бумага для построения графиков; скотч.

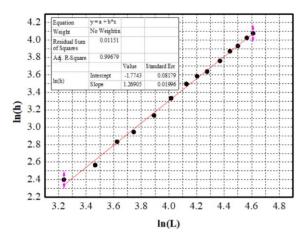
Возможное решение. Под длиной резиновой ленты понимается длина её участка между фиксирующими зажимами. С помощью мерной ленты размечается уголок и резиновая лента, положенная сверху на горизонтальную или даже наклонную поверхность уголка. После фиксации зажимами уголок поворачивают так, чтобы резиновая лента могла свободно провисать от горизонтальной поверхности. К другой стороне уголка (вертикальной) прикрепляем скотчем миллиметровую бумагу, и для указанных значений L измеряем стрелу прогиба.

Результаты измерений вносим в таблицу, с дополнительными столбцами для дальнейшей обработки.

L, cm	$L^{4/3}$, $M^{4/3}$	h, mm	ln(L)	ln(h)
100.5	1.007	59	4.61	4.08
96.0	0.947	56	4.56	4.03
90.0	0.869	51	4.50	3.93
85.0	0.805	48	4.44	3.87
79.0	0.730	43	4.37	3.76
72.0	0.645	38	4.28	3.64
67.0	0.586	36	4.20	3.58
62.0	0.529	33	4.13	3.50
55.5	0.456	28	4.02	3.33
49.0	0.386	23	3.89	3.14
42.3	0.318	19	3.74	2.94
37.5	0.270	17	3.62	2.83
32.0	0.219	13	3.47	2.56
25.5	0.162	11	3.24	2.40



2. Строим график зависимости $\ln h (\ln L)$. По угловому коэффициенту определяем величину $n=1,27\pm0.02$. С учётом разброса экспериментальных данных с помощью этого же графика оцениваем погрешность определения n.



3. При φ <<1 или h << L можно считать, что лента имеет постоянную линейную плотность и растянута по дуге окружности некоторого радиуса R. Раз горизонтальная проекция натяжения неизменна, то $T\cos\varphi=T_o$, где T_o натяжение в нижней точке, а T натяжение вблизи точки подвеса. Отсюда для малого φ имеем $T\cong T_o$.

Из равновесия по вертикали $2T\sin\varphi = \rho gLS$, а тогда $T \cong \rho gLS/2\varphi$.

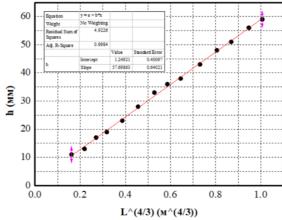
Относительное удлинение $\Delta L/L = 2R(\varphi - \sin \varphi)/2R\sin \varphi \cong \varphi^2/6$.

После подстановок из $T = ES\Delta L/L$ находим для модуля Юнга $E = 3\rho g L/\varphi^3$.

Так как $h = R(1 - \cos\varphi)$, а $L = 2R\sin\varphi$, то $\varphi = 4h/L$, а $E = 3\rho g L^4/64h^3$.

Использованы приближения: $\sin \varphi \cong \varphi - \varphi^3/6$; $\cos \varphi \cong 1 - \varphi^2/2$; $\operatorname{tg} \varphi \cong \varphi + \varphi^3/3$.

4. Для определения модуля Юнга можно построить график зависимости $h(L^{4/3})$ и по наклону графика определить E. Другая возможность решения — расчёт по полученной формуле зависимости h(L) значений E для разных L с последующим усреднением.



Угловой коэффициент графика составляет: $A=(5,7\pm0,3)\ 10^{-2}\ M^{-1/3}$ Из углового коэффициента модуль Юнга:

$$E = \frac{3\rho g}{64A^3} = (3.1 \pm 0.5) \text{ M}\Pi a$$