Задания первого теоретического тура

Девятый класс

<u>Задача 9-1</u>

«Когда разложение протекает не до конца»

Неорганическая соль **X**, присутствующая на полках большинства химических лабораторий, хорошо растворима в воде. В первой серии опытов навеску 0.5000 г соли **X** растворили в воде, раствор разделили на две равные части, к одной из частей прилили избыток раствора AgNO₃ (*p-ция* 1), к другой – избыток Ba(NO₃)₂ (*p-ция* 2). Выпавшие осадки взвесили, по отдельности прибавили к растворам хлорной кислоты, в каждом случае наблюдали выделение газа и полное растворение осадка (*p-ции* 3 и 4).

Массы осадков после обработки половины навески соответствующими реагентами

			I		
	Реагенты	$AgNO_3$	HClO ₄	$Ba(NO_3)_2$	HClO ₄
	Серия опытов 1	0.5873 г	нет осадка	0.4306 г	нет осадка
	Серия опытов 2 m_1		0.0836 г	m_2	0.2358 г

Во второй серии опытов соль **X** массой 0.5000 г пред растворением в воде прокалили без доступа воздуха (*p-ция* 5), в результате прокаливания масса твердой навески не изменилась. Последующие процедуры не отличались от первой серии опытов (*p-ции* 6 и 7), однако при растворении в хлорной кислоте оба осадка растворились лишь частично. Массы соответствующих осадков представлены в таблице.

- 1. Определите формулу соли X и составьте полные уравнения всех проведенных реакций (1–7).
- 2. Вычислите степень разложения вещества ${\bf X}$ при прокаливании.
- 3. Установите массы осадков m_1 и m_2 в таблице.

<u>Задача 9-2</u>

Элементы X и Y находятся в одной группе периодической системы элементов Д. И. Менделеева. При взаимодействии простых веществ X_2 и Y_2 в различных условиях образуется ряд соединений: $A, \, B, \, B$.

В таблице приведены некоторые свойства этих соединений:

	X_2	\mathbf{Y}_2	A	Б	В
Tпл, °С	-219.7	-101,0	-155.6	-76.3	-103
$T_{\text{кип}}$, °С	-188.1	-34,6	-100	11.8	-13.1
Плотность жидкости, г/мл	1.51	1.56	1.62	1.83	1.90
ω(Y), %			65.11	38.35	27.18

- 1) Вещество **A** образуется при нагревании до 220 °C смеси газообразных простых веществ, взятых в стехиометрическом соотношении.
- 2) Поток газов X_2 и Y_2 со скоростью 1.2 л/час и 0.8 л/час (объем измеряли при -34 °C и 1 атм.) пропускают через разогретую до 250 °C печку, затем смесь последовательно проходит через ловушки, охлажденные до -70 °C, -150 °C и -196 °C. За 8 часов в ходе реакции в первой ловушке конденсируется 4.5 мл жидкости, во второй -19.0 мл, в третью ловушку до начала реакции конденсируют «жидкий воздух».
- 3) Вещество **В** получают, нагревая смесь **Б** и \mathbf{X}_2 в мольном отношении 1 : 10 до 200 °C под давлением 100 атм.

Вопросы:

- 1. Определите вещества Х2, У2, А, Б и В. Ответ обоснуйте.
- 2. Какие вещества конденсируются в первой и второй ловушках?
- 3. Какое вещество конденсируется в третьей ловушке? Рассчитайте его массу. С каким из компонентов «жидкого воздуха» оно может реагировать? Напишите хотя бы одно уравнение реакции.
- 4. Как очистить вещество **B** от избытка X_2 ?
- 5. Напишите уравнения реакций **A**, **Б** и **B** с холодным раствором NaOH.

Задача 9-3

«Превращение под давлением»

Вещество **X** впервые получено в 2013 году под давлением $1.5 \cdot 10^5$ атмосфер и при температуре около 2000 °C путем нагревания стехиометрической смеси простых веществ **A** и **B** (*p-ция* 1), элементов главных подгрупп. До недавнего времени были известны лишь два вещества **Y** и **Z**, имеющие такой же качественный состав. При взаимодействии веществ **X**, **Y** и **Z** с водой образуется нерастворимое в воде и щелочах вещество, а также выделяются газы **X**₁, **Y**₁ и

 Z_1 , соответственно (*p-ции* 2 – 4):

Продукт гидролиза	X_1	\mathbf{Y}_{1}	\mathbf{Z}_1
ρ, г/л (н. у.)	0.714	1.161	1.786

Дополнительная информация:

- 1) Химические связи **A**–**B** в структуре каждого из веществ равноценны, атомы элемента **A** сохраняют степень окисления при гидролизе, переходя в состав соответствующего газообразного продукта.
- 2) В составе одного из веществ (\mathbf{X} , \mathbf{Y} или \mathbf{Z}) массовые доли элементов равны.
- 3) **Y** получают нагреванием **B** с **Y**₁ (*p*-*ция* 5); **Z** получают нагреванием **B** с бинарным веществом **Z**₂, содержащим 16.67 % водорода (*p*-*ция* 6); **Y** разлагается выше 580 °C с образованием **Z** (*p*-*ция* 7).

Вопросы:

- 1. Определите элемент **A** и состав газообразных соединений X_1 , Y_1 , Z_1 и жидкости Z_2 . Изобразите структурные формулы веществ X_1 , Y_1 и Z_1 с учетом данных условия.
- 2. Определите **B**, **X**, **Y** и **Z**. Составьте полные уравнения всех упомянутых реакций (1-7).
- 3. Составьте уравнения взаимодействия веществ \mathbf{X} , \mathbf{Y} и \mathbf{Z} с серной кислотой (*р-ции* 8-10). Рассчитайте массовую долю H_2SO_4 в растворе, полученном в результате взаимодействия 1.00 г \mathbf{Y} с 41.3 г 10 %-ной серной кислоты.

<u>Задача 9-4</u>

Для получения веществ X_3 и X_4 в лаборатории использовали вещества X, X_1 и X_2 , а также газ Y и аргон. Проведены четыре опыта: два (опыт 1 и опыт 3) в атмосфере аргона, а два других (опыт 2 и опыт 4) — в атмосфере горючего газа Y. В замкнутый реактор объемом 100 мл загружали вещества, массы которых указаны в таблице, и нагревали реактор до 1000 °C. Все реакции проходят количественно.

	№ масса опыта X, г	масса	масса	давление в	давление в	наонуист	
		Х, г	X_1 , Γ	Γ X_2 , Γ	автоклаве до синтеза, атм*	автоклаве после синтеза, атм*	продукт
	1	_	1.00	0.378	1 (Ar)	1 (Ar)	X_3
	2	0.360	1.00	_	17.06 (Y)	14.87 (Y)	X_3
	3	-	1.00	2.27	1 (Ar)	1 (Ar)	X_4
	4	2.162	1.00	-	17.06 (Y)	3.66 (Y)	X_4

^{*}в скобках приведен газ, которым заполнен реактор. Давление измерено при 25 °C.

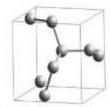
Полученные вещества представляют собой бесцветные кристаллы, которые при нагревании на воздухе сгорают, давая пламя кирпично-красного цвета. При растворении $1 \, \Gamma \, \mathbf{X_3} \, \mathbf{B}$ избытке раствора серной кислоты выпадает 2.249 г белого осадка $\mathbf{X_5}$, нерастворимого в кислотах, и выделяется 292.6 мл (н. у.) газа \mathbf{Y} .

Известно, что в состав веществ X_1-X_5 входит элемент X, а X_5 встречается в природе в виде минерала. Вещество X_1 используют в качестве осущителя.

Вопросы:

- 1. Определите неизвестные вещества ${\bf X},\ {\bf X_1}-{\bf X_5}$ и ${\bf Y},\$ ответ подтвердите расчетом.
- 2. Напишите уравнения реакций образования X_3 и X_4 (1 4), а также реакции X_3 и X_4 с серной кислотой (5 6).
- 3. Как называется минерал X_5 ?
- 4. Какие частицы находятся в узлах кристаллических решеток X_3 и X_4 ?

Задача 9-5


Атомные и молекулярные кристаллы

Газообразное вещество \mathbf{X} можно перевести в твердое состояние двумя способами: сильным охлаждением при обычном давлении или сильным сжатием (до 1.5 млн. атм) при высокой температуре (1400 К). В первом случае (вещество \mathbf{A}) образуются молекулярные кристаллы, во втором (вещество \mathbf{B}) – атомные. У обоих твердых веществ элементарная ячейка имеет форму куба и содержит 4 частицы. Длина ребра ячейки составляет 0.567 нм для \mathbf{A} и 0.345 нм для \mathbf{B} . Плотность \mathbf{A} равна 1.02 г/см³.

В структуре А каждая молекула имеет 12 ближайших соседей, энергия

взаимодействия между соседями составляет 1.1 кДж/моль, а энергия связи в молекуле — 945 кДж/моль. Вещество ${\bf B}$ имеет алмазоподобную структуру (см. рисунок), все химические связи в ней одинаковы и имеют энергию 160 кДж/моль.

Оба твёрдых вещества неустойчивы при обычных давлении и температуре и превращаются в газ \mathbf{X} .

Элементарная ячейка вещества В

Вопросы:

- **1.** Из каких частиц состоят вещества ${\bf A}$ и ${\bf B}$? Напишите их формулы, ответ подтвердите расчетом.
- **2.** Определите плотность **B**. Во сколько раз увеличивается объем, если **B** превращается в **X** при нормальных условиях?
- **3.** Вещество **B** называют «высокоэнергетичным», потому что оно обладает большим запасом энергии, которая выделяется, когда **B** разлагается и превращается в газ **X**. Сколько энергии можно получить из 1 грамма **B**? А можно ли получить энергию при переходе **A** в **X**? Кратко объясните.
- **4.** Кристаллы **B** можно получить из газа **X** в более мягких условиях посредством осаждения из плазмы, полученной действием на **X** радиочастотного излучения. А как получить чистое вещество **X** из твердого вещества (не **A** и не **B**!)? Напишите уравнения не менее 3-х таких реакций.

Дополнительные сведения: $1 \text{ нм} = 1 \cdot 10^{-7} \text{ см}.$