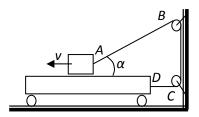

Решения и критерии оценивания

Задача 1


Небольшой брусок через систему блоков связан нерастяжимой нитью с длинной тележкой, которая может катиться по горизонтальной поверхности. Брусок кладут на тележку и приводят в движение с постоянной скоростью v = 2 м/с, направленной горизонтально вдоль тележки (см. рис.). Какую скорость относительно

бруска будет иметь тележка в тот момент, когда угол между наклонной нитью и горизонтом составит $\alpha = 60^{\circ}$? Считайте, что в указанный момент тележка не доехала до стены, к которой прикреплены блоки.

Возможное решение

Ввиду нерастяжимости нити проекция скорости точки A верёвки на направление AB равна проекции скорости точки D верёвки на направление DC, т. е. $v\cos\alpha=u$, где u — скорость тележки относительно земли. Скорость тележки относительно бруска равна:

$$v_{\text{отн.}} = u + v = v(1 + \cos \alpha) = 3 \text{ M/c.}$$

Критерии оценивания

Применено условие нерастяжимости нити	3 балла
Найдена скорость тележки относительно земли	2 балла
Применён закон сложения скоростей	3 балла
Найдена скорость тележки относительно бруска	2 балла

За каждое верно выполненное действие баллы складываются.

При арифметической ошибке (в том числе ошибке при переводе единиц измерения) оценка снижается на 1 балл.

Максимум за задание – 10 баллов.

Задача 2

Льдинка с вмороженной в неё пулей висит на нити и частично погружена в воду, находящуюся в тонкостенном цилиндрическом стакане, стоящем на столе. Лёд не касается стенок и дна стакана. Площадь дна стакана $S=100~{\rm cm}^2$. Сила натяжения нити равна $F=1~{\rm H}$. На сколько изменится уровень воды в стакане после того, как льдинка растает? Повысится он или понизится? Пуля имеет массу $m=10~{\rm r}$ и плотность $\rho=10~000~{\rm kr/m}^3$. Плотность воды $\rho_0=1000~{\rm kr/m}^3$.

Возможное решение

Рассмотрим внешние силы, действующие на содержимое стакана, в которое включим воду, льдинку и пулю. Сила тяжести компенсируется двумя направленными вверх внешними силами — силой F и силой давления со стороны дна. Последняя, по третьему закону Ньютона, равна по модулю силе давления на дно со стороны жидкости. Из условия равновесия содержимого стакана в исходном состоянии следует:

$$F + S\rho_0 g h_1 = m_{\text{содерж}} g ,$$

где h_1 – высота уровня воды в исходном состоянии.

После таяния льдинки масса содержимого сохраняется, но изменяется уровень воды в стакане и, следовательно, давление воды около дна. Кроме этого, перестаёт действовать сила F, но на дно с силой $N=mg-\frac{m}{\rho}\rho_0g=mg\left(1-\frac{\rho_0}{\rho}\right)$ начинает давить пуля. Новое условие равновесия содержимого стакана имеет вид:

$$S\rho_0 g h_2 + N = m_{\text{соперж}} g ,$$

где h_2 – высота уровня воды в конечном состоянии.

Вычитая из первого уравнения второе, получим выражение для изменения уровня воды в стакане:

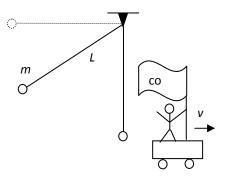
$$\Delta h = h_2 - h_1 = \frac{F - mg(1 - (\rho_0/\rho))}{\rho_0 gS} = 0.91 \text{ cm}.$$

Так как эта величина положительная, то уровень повысится.

Критерии оценивания

Записано условие равновесия содержимого в исходном состоянии	.2 балла
Записано условие равновесия содержимого в конечной ситуации	.2 балла
Получено выражение для изменения уровня жидкости	.2 балла
(Если задача решалась через объём погружённой льдинки и изменение	объёмов
при таянии, то за верное выражение для изменения уровня – 6 баллов.)	
Получено численное значение для изменения уровня жидкости	.2 балла
Явно указано, что уровень повысится	.2 балла

За каждое верно выполненное действие баллы складываются.


При арифметической ошибке (в том числе ошибке при переводе единиц измерения) оценка снижается на 1 балл.

Максимум за задание – 10 баллов.

Всероссийская олимпиада школьников по физике 2016–2017 уч. г. Муниципальный этап. 10 класс

Задача 3

Небольшой шарик массой *m*, подвешенный на лёгкой нерастяжимой нити к потолку комнаты, отпустили без начальной скорости из состояния, в котором нить была горизонтальна. Найдите работу силы натяжения нити над шариком при его движении от верхнего положения до самого нижнего. Ответ дайте для системы отсчёта, связанной с комнатой, и для системы отсчёта, движущейся относительно комнаты

горизонтально в плоскости рисунка с постоянной скоростью V. Длина нити L. Систему отсчёта, связанную с комнатой, можно считать инерциальной.

Возможное решение

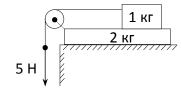
В системе отсчёта, связанной с комнатой, сила натяжения нити в любой момент движения направлена перпендикулярно скорости шарика, следовательно, её работа равна нулю.

Закон сохранения механической энергии для шарика имеет вид $mgL = \frac{mu^2}{2}$, откуда можно найти скорость шарика в нижнем положении: $u = \sqrt{2gL}$. В движущейся системе отсчёта начальная скорость шарика по модулю равна V, а модуль конечной скорости шарика равен |V-u|. Тогда из теоремы о кинетической энергии для шарика следует: $\frac{m(|V-u|)^2}{2} - \frac{mV^2}{2} = A_T + mgL$. Отсюда получаем, что работа силы натяжения нити равна: $A_T = -mVu = -mV\sqrt{2gL}$.

Так как в движущейся системе отсчёта в любой момент угол между векторами скорости шарика и силы натяжения тупой, работа этой силы отрицательная.

Критерии оценивания

Обосновано равенство нулю работы силы натяжения нити в системе отсчёта,
связанной с комнатой
Записан закон сохранения энергии в системе отсчёта, связанной
с комнатой 2 балла
Найдена начальная и конечная скорость шарика в движущейся системе
отсчёта
Применена теорема о кинетической энергии для шарика в движущейся системе
отсчёта
Получено выражение для работы силы натяжения нити в движущейся системе
отсчёта (с правильным знаком)


За каждое верно выполненное действие баллы складываются.

При арифметической ошибке (в том числе ошибке при переводе единиц измерения) оценка снижается на 1 балл. Максимум за задание — **10 баллов**.

Всероссийская олимпиада школьников по физике 2016–2017 уч. г. Муниципальный этап. 10 класс

Задача 4

На столе лежит доска массой $m_1=2$ кг, а на доске находится брусок массой $m_2=1$ кг. К бруску привязана лёгкая нить, второй конец которой перекинут через идеальный блок, закреплённый на

краю доски. Коэффициенты трения между доской и столом и между бруском и доской одинаковы и равны $\mu=0,1$. Участок нити между бруском и блоком горизонтален. С какими по модулю ускорениями начнут двигаться брусок и доска, если к вертикальному участку нити приложить направленную вниз силу F=5 H? Ускорение свободного падения можно считать равным g=10 м/с².

Возможное решение

На доску в горизонтальном направлении действуют три силы: направленная вправо сила натяжения нити и направленные влево силы трения со стороны пола и бруска. Горизонтальная составляющая силы натяжения нити, действующая на доску вправо, равна по модулю 5 Н. Она больше суммы модулей максимально возможных сил трения, которые действуют на доску:

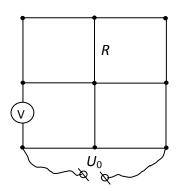
$$\mu[(m_1 + m_2)g + F] + \mu m_2 g = 4.5 \text{ H}.$$

Следовательно, доска будет скользить по полу вправо. При этом очевидно, что брусок будет проскальзывать по доске влево. Из второго закона Ньютона, записанного для доски и для бруска, находим модули их ускорений:

$$a_1 = \frac{F - (\mu[(m_1 + m_2)g + F] + \mu m_2 g)}{m_1} = 0,25 \frac{M}{c^2}, \ a_2 = \frac{F - \mu m_2 g}{m_2} = 4 \frac{M}{c^2}.$$

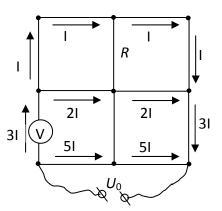
Критерии оценивания

Правильно указаны силы, действующие на тела	ıa
Указаны максимально возможные модули сил трения для доски и для брусн	ка
(по 1 баллу за каждую величину)	ıa
Объяснено, почему доска скользит по полу вправо	IJ
Указано, что брусок проскальзывает по доске и движется относительно доск	ζИ
влево	IЛ
Найден модуль ускорения бруска	ıa
Найден модуль ускорения доски	ıa


За каждое верно выполненное действие баллы складываются.

При арифметической ошибке (в том числе ошибке при переводе единиц измерения) оценка снижается на 1 балл.

Максимум за задание – 10 баллов.


Задача 5

Электрическая цепь представляет собой проволочную сетку, состоящую из звеньев, имеющих одинаковые сопротивления R. Одно звено заменено на вольтметр, сопротивление которого тоже равно R. К сетке подключён источник напряжения $U_0 = 20 \, \mathrm{B}$ так, как показано на рисунке. Найдите показание вольтметра.

Возможное решение

Изобразим схематически токи, текущие в звеньях сетки, учитывая её симметрию и закон Ома для участка цепи. Согласно этому закону, силы тока в параллельных звеньях, находящихся под одинаковым напряжением, обратно пропорциональны сопротивлениям ЭТИХ При звеньев. изображении токов также нужно учитывать закон сохранения электрического заряда для узлов сетки – сумма токов, втекающих в узел, должна

быть равна сумме токов, вытекающих из узла. Кроме того, заметим, что, в силу симметрии схемы, токи через средние вертикальные проводники не текут.

Если через верхние звенья течёт ток силой I, то через средние горизонтальные проводники течёт ток силой 2I (так как ток I течёт через звенья с общим сопротивлением 4R, а ток 2I — через звенья с общим сопротивлением 2R). Ток силой 3I течёт через участок цепи с общим сопротивлением 10R/3 — этот участок включает в себя все элементы, кроме двух нижних горизонтальных звеньев. Это означает, что через два нижних горизонтальных звена с суммарным сопротивлением 2R течёт ток силой 5I. Напряжение на этих двух нижних звеньях равно $U_0 = 10IR$. Для вольтметра можно записать: $U_V = 3IR$. Отсюда

$$U_V = 3U_0/10 = 6$$
 B.

Критерии оценивания

Всероссийская олимпиада школьников по физике 2016–2017 уч. г. Муниципальный этап. 10 класс

Установлена связь между показанием вольтметра и током, текущим через него
Получено выражение для связи напряжения источника и показания вольтметра
Получен численный ответ для показания вольтметра
При решении с помощью построения эквивалентной схемы: Указано на отсутствие протекания токов через средние вертикальные проводники 1 балл Правильно составлена эквивалентная схема 2 балла Правильно определено полное сопротивление электрической цепи 3 балла
Правильно определён ток, текущий через источник напряжения
Получен численный ответ для показания вольтметра
За каждое верно выполненное действие баллы складываются. При арифметической ошибке (в том числе ошибке при переводе единиц измерения) оценка снижается на 1 балл. Максимум за задание — 10 баллов.

Всего за работу – 50 баллов.