7 класс

Задача 1. Скорость света. Экспериментатор Глюк исследовал движение солнечного зайчика, который изначально покоился, затем с постоянной скоростью перемещался вдоль прямой, а в конце пути опять замер. Глюк раз в минуту записывал в таблицу координату зайчика. Правда, несколько раз он отвлекался и пропустил несколько измерений (в таблице прочерки).

<i>t</i> , мин	0	1	2	3	4	5	6	7	8	9	10
<i>X</i> , M	0	0	-	7	-	-	-	47	-	-	50

Помогите экспериментатору определить, в какой момент зайчик начал движение. С какой скоростью зайчик перемещался? Как долго он перемещался? Кроме этого, заполните пропуски в таблице.

Задача 2. Который путь длиннее? Первую треть пути автомобиль ехал со скоростью υ_1 , а последнюю треть времени – со скоростью υ_3 . На втором участке пути его скорость равнялась средней скорости движения на всём пути. Известно, что $\upsilon_1 > \upsilon_3$.

Какой из участков самый короткий, а какой самый длинный?

На каком участке автомобиль находился дольше всего, а на каком – меньше всего?

Задача 3. Коробка с сахаром (1). Кубики сахара-рафинада плотно упакованы в коробку, на которой написано: «Масса нетто (m) = 500 г, 168 штук». Длина самого длинного ребра коробки c = 98 мм. Вдоль самого короткого ребра коробки укладывается ровно 4 кусочка сахара. Чему равна плотность ρ сахара-рафинада?

Примечание: «нетто» это масса продукта без учёта массы упаковки (тары).

Задача 4. С одним велосипедом. Группа туристов из 3 человек направилась из пункта A в пункт B, расстояние между которыми L=22 км. Попутных машин нет $\textcircled{\otimes}$. В распоряжении группы есть один велосипед, на котором одновременно могут ехать не больше 2-х человек. Скорость движения пешим ходом составляет $\upsilon_0=5$ км/час, при езде на велосипеде одного человека его скорость $\upsilon_1=20$ км/час, а при езде вдвоем — $\upsilon_2=15$ км/час. Как должны действовать туристы, чтобы за минимальное время добраться до пункта B? Найдите это время.

Возможные решения

7 класс

Задача 1. (**Замятнин М.**). Из-за редких измерений из таблицы сразу не ясно, в какой момент зайчик начал движение, а в какой — остановился. Можно построить график зависимости координаты от времени и по нему найти время t движения. По коэффициенту наклона графика найдём скорость движения зайчика: $\upsilon = 10$ м/мин. Разделив перемещение x = 50 м на скорость υ , найдём полное время движения $t_0 = 5$ мин. Время начала движения можно определить по перемещению за 3-ю минуту. Оно составляет 7 метров, следовательно, зайчик двигался 0,7 мин. Время старта 2,3 мин от начала измерений. На месте пропусков должны быть числа 0 м, 17 м, 27 м, 37 м, 50 м и 50 м соответственно.

Примерные критерии оценивания

Найдена скорость движения зайчика	3 балла
Найдено время движения зайчика	2 балла
Найдено время начала движения	2 балла
Заполнены пропуски в таблице (по 0,5 балла за точку)	3 балла

Задача 2. (Слободянин В.). Поскольку $\upsilon_1 > \upsilon_3$, то $\upsilon_{\rm cp}$ справедливо неравенство

$$v_1 > v_{cp} = v_2 > v_3$$
. (1)

Учитывая, что $T_1 + T_2 + T_3 = T$, получим

$$T_1 < T_3 < T_2 \dots (2)$$

На первом участке $\frac{S}{3} = \upsilon_1 T_1$. Следовательно $S > 3 \ \upsilon_{\rm cp} T_1$, откуда $T_1 < \frac{S}{3 \ \upsilon_{\rm cp}} = \frac{T}{3} = T_3$.

На третьем участке $S_3=\upsilon_3\frac{T}{3}<\upsilon_{\rm cp}\frac{T}{3}=\frac{S}{3}=S_1,$ и $S_1+S_2+S_3=S$, откуда следует: $S_3< S_1< S_2 \,. \tag{3}$

Альтернативное решение. По условию на втором участке

$$\nu_{\rm cp} = \frac{S_2}{T_2} = \frac{S - \frac{S}{3} - T_3 \nu_3}{T - \frac{S}{3\nu_1} - \frac{T}{3}}.$$

Поделим числитель и знаменатель на Т и приведём подобные. В результате получим:

$$v_{\rm cp} = \sqrt{v_1 v_3}$$
.

Теперь несложно получить неравенства на перемещения и время движения.

Примерные критерии оценивания

Написано неравенство для скоростей или υ_{cp} выражена через υ_1 и υ_3
Написано неравенство для времён движения на соответствующих участках
(по два балла за неравенство)
Написано неравенство для длин соответствующих участков
(по два балла за неравенство)

Задача 3. (Кармазин С.). Так как в коробке уложено 4 слоя кусочков сахара, то в одном слое их 42 штуки (n = 168/4 = 42). Число 42 можно разложить на простые множители: $42 = 2 \cdot 3 \cdot 7$. Следовательно, один слой может иметь размеры $21 \cdot 2$ кусочка, $14 \cdot 3$ кусочка или $7 \cdot 6$ кусочков. Первые два варианта противоречат условию, так как тогда вдоль самого короткого ребра укладывалось бы 2 или 3 кусочка. Таким образом, вдоль длинного ребра укладывается 7 кусочков и, соответственно, размер ребра кубика сахара равен

$$a = c/7 = 98 \text{ MM}/7 = 14 \text{ MM}.$$

Общий объем сахара равен

 $V=14~\mathrm{mm}\cdot 14~\mathrm{mm}\cdot 14~\mathrm{mm}\cdot 168~\mathrm{штук}\approx 460992~\mathrm{mm}^3\approx 0,461\cdot 10^{-3}~\mathrm{m}^3.$ Плотность сахара $\rho=m/V=0,5/(0,461\cdot 10^{-3})\approx 1085~\mathrm{kg/m}^3.$

Примерные критерии оценивания

Найдено число кусков в слое	1 балла
Возможные длины сторон слоя выражены в кусках сахара	3 балла
Показано что длины сторон слоя в кусках сахара равны 7 и 6 штук	1 балл
Длина ребра куска сахара выражена в мм	2 балла
Найден объем куска сахара в мм ³ или м ³	2 балла
Найдена плотность сахара	1 балл

Задача 4. (Варламов С.). Время путешествия будет минимальным, если все туристы одновременно прибудут в пункт назначения, а велосипед всё время будет задействован: в сторону от A к B на нём будут ехать двое, а от B к A – один).

Пусть два туриста на велосипеде проехали расстояние x. На это им потребовалось время $t_2 = x / \upsilon_2$. Затем один из них до пункта E шёл пешком (и прошёл расстояние L - x за некоторое время t_0), а другой — поехал обратно навстречу своему товарищу, который из A шёл пешком. Пусть на обратную дорогу он потратил время τ . Если они встретятся от пункта A на расстоянии y = L - x, то далее проедут на велосипеде расстояние x и прибудут в пункт E одновременно со спешившимся туристом!

Запишем эти условия на языке формул.

$$\upsilon_0(t_2+\tau) = L - x \,. \tag{1}$$

За время t_2 пеший турист прошёл расстояние $x_1 = v_0 t_2 = x \frac{v_0}{v_2}$. Следовательно,

велосипедист проедет обратно, до встречи со своим товарищем, расстояние $l = x - x_1$ за

время

$$\tau = \frac{x - x_1}{\nu_0 + \nu_1} = \frac{\nu_2 - \nu_0}{\nu_2} \frac{x}{\nu_0 + \nu_1}$$

Подставим в формулу (1) времена t_2 и τ .

$$v_0 \left(\frac{x}{v_2} + \frac{v_2 - v_0}{v_2} \frac{x}{v_0 + v_1} \right) = L - x.$$

Разрешив это уравнение относительно x и подставив числовые значения скоростей и расстояния L, получим: x = 15 км.

Теперь найдём время $t_2 = \frac{x}{\upsilon_2} = 1$ час. Расстояние L - x = 7 км. Откуда $t_0 = \frac{L - x}{\upsilon_0} = 1,4$ часа.

Таким образом, всё время путешествия $T=t_2+t_0=2,4$ часа.

Примерные критерии оценивания

Предложена идея нахождения минимума времени путешествия	3 балла
Конкретизация этой идеи $(y = L - x)$	1 балл
За формулу (1) или её аналога	1 балл
Найдено время τ перемещения велосипедиста в направлении от E к A	1 балл
Решена система уравнений и найдено расстояние х	3 балла
Найдено время <i>Т</i> всего путешествия	1 балл