Десятый класс

(Авторы: К.А. Коваленко, М.А. Ильин)

1. Уравнение реакции взаимодействия КІ и КМпО₄ в водном растворе:

$$KI + 2KMnO_4 + H_2O \xrightarrow{t^\circ} KIO_3 + 2MnO_2 + 2KOH.$$

2. Рассчитаем количества веществ-реагентов, взятых для синтеза:

$$\nu(\text{KI}) = 0.75 / 166 = 4.5 \cdot 10^{-3} \text{ моль};$$

 $\nu(\text{KMnO}_4) = 1.5 / 158 = 9.5 \cdot 10^{-3} \text{ моль}.$

Учитывая стехиометрические соотношения реагентов в уравнении реакции получения KIO_3 , можно заключить, что в недостатке находится KI, а $KMnO_4$ взят в избытке. Максимальное количество получаемого KIO_3 составляет $4.5 \cdot 10^{-3}$ моль, что соответствует $4.5 \cdot 10^{-3} \cdot 214 = 1.0$ г.

Выход полученного соединения рассчитывается следующим образом:

$$\eta(\mathrm{KIO_3}) = \frac{m_{\text{практическая}}}{m_{\text{теоретическая}}} \cdot 100 \% = \frac{m_{\text{практическая}}}{1,0} \cdot 100 \%.$$

3. Этиловый спирт в конце синтеза добавляли для того, чтобы восстановить избыточное количество перманганат-ионов (или манганат-ионов, которые могут также образоваться при проведении реакции) и осадить весь марганец из раствора в виде MnO_2 :

$$4KMnO_4 + 3C_2H_5OH \rightarrow 4MnO_2\downarrow + 3CH_3COOK + KOH + 4H_2O$$
 (или $2K_2MnO_4 + C_2H_5OH \rightarrow 2MnO_2\downarrow + CH_3COOK + 3KOH).$

- **4.** Уравнения приведенных реакций, характеризующих свойства полученного иодата калия:
 - a) $KIO_3 + 5KI + 3H_2SO_4 \rightarrow 3I_2 + 3K_2SO_4 + 3H_2O$;
 - **6)** $\text{KIO}_{3 \text{ TB.}} + 6 \text{HCl}_{\text{КОНЦ.}} \rightarrow \text{K[ICl}_{4}] + \text{Cl}_{2} \uparrow + 3 \text{H}_{2} \text{O};$
 - **B)** $2\text{KIO}_3 + 12\text{HCl}_{\text{конц.}} \xrightarrow{t^\circ} I_2 + 5\text{Cl}_2 \uparrow + 2\text{KCl} + 6\text{H}_2\text{O};$
 - $\Gamma) 2KIO_{3 \text{ TB.}} \xrightarrow{t^{\circ}} 2KI + 3O_2 \uparrow.$
 - 5. Уравнение реакции Ландольта в ионном виде:

$$2IO_3^- + 5SO_3^{2-} + 2H^+ \rightarrow I_2 + 5SO_4^{2-} + H_2O.$$

Катализатором этой реакции, как было отмечено в задании, является иод, который окисляет сульфит-ион:

$$I_2 + SO_3^{2-} + H_2O = 2I^- + SO_4^{2-} + 2H^+$$

а иодид-ион, в свою очередь, восстанавливает иодат-ион:

$$IO_3^- + 5I^- + 6H^+ = 3I_2 + 3H_2O.$$

6. Реакция Ландольта не может являться элементарной реакцией, поскольку стехиометрическое отношение иодата к сульфиту 2:5, а молекулярность реакции (т.е. порядок элементарного акта химического превращения) не может превышать 3. Следовательно, реакция протекает по

сложному механизму в несколько стадий.

7. Ожидаемые времена появления окраски при использовании рекомендуемых растворов приведены в таблице:

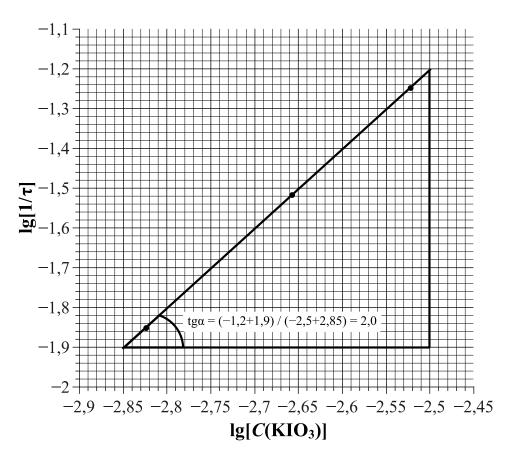
№ опыта	В стакан объемом 100 мл		В стакан объемом 50 мл	Конечные концентрации (после смешения растворов)		Время индукции (τ),
	<i>V</i> (KIO ₃), мл	<i>V</i> (H ₂ O), мл	V(Na ₂ SO ₃), мл	$C(KIO_3),$ M	$C(Na_2SO_3),$ M	секунды
1	40 (4 аликвоты)	0	10	$3,0\cdot 10^{-3}$	$1,0 \cdot 10^{-3}$	17,7
2	30 (3 аликвоты)	10	10	$2,2 \cdot 10^{-3}$	$1,0 \cdot 10^{-3}$	32,9
3	20 (2 аликвоты)	20	10	$1,5 \cdot 10^{-3}$	$1,0 \cdot 10^{-3}$	70,8

8. Согласно закону действия масс, скорость реакции пропорциональна концентрациям реагирующих веществ, взятых в степень порядка по этому компоненту:

$$v = k \cdot C^a(\mathrm{IO}_3^-) \cdot C^b(\mathrm{SO}_3^{2-}),$$

где k – константа скорости химической реакции,

а – порядок реакции по иодат-иону,


b – порядок реакции по сульфит-иону.

Поскольку концентрация сульфита не изменялась в ходе экспериментов, при логарифмировании данного уравнения получаем:

$$\lg v \sim \lg(1/\tau) = \lg(k \cdot C^b(SO_3^{2-})) + a\lg(C(IO_3^-)) \Rightarrow y = const + ax.$$

Следовательно, тангенс угла наклона прямой равен порядку a по иодат-иону.

Зависимость $\lg[1/\tau]$ от $\lg[C(\mathrm{KIO_3})]$, полученная для указанных в пункте 7 значений, приведена ниже.

Таким образом, порядок реакции по иодат-иону равен 2,0.

Система оценивания:

1. Уравнение реакции получения KIO_3	1 балл
2. Расчет теоретической массы и выхода продукта	3 балла
3. Объяснение добавления этанола с уравнением реакции	1 + 1 = 2
балла	
4. Уравнения реакций	$1 6. \times 4 = 4$
балла	
Выход КІО3 (результат эксперимента в части 1)	20 баллов
(более $50\% - 20$ баллов; баллы за выход менее 50% выставля оценка = выход (в %) / 2,5, округленная до полуцелого значени	•
но в целом за этот раздел — не менее 5 баллов)	
5. Уравнение реакции Ландольта	1 балл
6. Объяснение "неэлементарности" реакции	
7. Заполнение пропусков в таблице	0,5 б. × 9 =
4,5 балла	
8. Построение графика по экспериментальным точкам	2 балла
Расчет порядка по компоненту	1,5 балла
Значение порядка (результат эксперимента в части 2)	10 баллов
(отличие не более 5 % (интервал $1,9$ - $2,1)$ $ 10$ баллов;	