Десятый класс

Решение 10-1 (А. А. Дроздов, М. Н. Андреев)

1) Известно, что 2, 3, 4 — соли щелочного металла. Выделение характерного запаха (уксуса) при действии на раствор 1 ацетатом свинца (свинцовым сахаром) позволяет предположить, что вещество 1 — сильная кислота, которая не дает осадка с катионом свинца. Очевидно, что это HNO₃. В таком случае раствор 2, дающий белый осадок с ацетатом свинца и разлагаемый кислотой с выделением углекислого газа (газ без запаха, выделяемый при действии кислоты) — средний карбонат. (Заметим, что гидрокарбонат при добавлении кислоты сразу будет давать газ, а в описании опыта сказано, что газ начала выделяться спустя некоторое время). Раствор 4, изменяющий желтую окраску на оранжевую под действием кислоты — это хромат. Таким образом, 2 — это M₂CO₃, 4 — M₂CrO₄. Найдем *М*:

$$2x/(2x+60) - 2x/(2x+116) = 0,15, x = 23,$$
 что соответствует натрию.

Соль 3 также содержит натрий. Выпадение желтого осадка при действии свинцового сахара свидетельствует о том, что это иодид натрия. При действии на NaI кислоты 1 и пероксида водорода образуется желтый раствор. Появление желтой окраски есть следствие окисления иодида до иода.

Розовое окрашивание, возникающее при добавлении первых капель раствора 1 к раствору 2 (карбонату натрия) вызвано реагирующим на щелочную реакцию среды фенолфталеином, который принес из дома первый гном. Фенолфталеин плохо растворим в воде, его сначала растворяют в спирте.

Итак:
$$1 - HNO_3$$
, $2 - Na_2CO_3$, $3 - NaI и 4 - Na_2CrO_4$

- (1) $Pb(CH_3COO)_2 + 2HNO_3 = Pb(NO_3)_2 + 2CH_3COOH$
- $(2)\ 2Pb(CH_3COO)_2 + 2Na_2CO_3 + H_2O = Pb_2(OH)_2CO_3\downarrow + CO_2\uparrow + 4CH_3COONa$ (возможно написание $Pb(OH)_2$) белый
 - (3) $Pb(CH_3COO)_2 + 2NaI = PbI_2 \downarrow + 2CH_3COONa$

желтый

(4)
$$Pb(CH_3COO)_2 + Na_2CrO_4 = PbCrO_4 + 2CH_3COONa$$

желтый

(5) Na₂CO₃ + HNO₃ = NaHCO₃ + NaNO₃ (без выделения газа)

И далее
$$NaHCO_3 + HNO_3 = NaNO_3 + CO_2 \uparrow + H_2O$$

(6) $HNO_3 + NaI = в$ разбавленном растворе реакции нет,

$$H_2O_2 + 2NaI + 2HNO_3 = 2H_2O + I_2 + 2NaNO_3$$

(7) $2Na_2CrO_4 + 2HNO_3 = Na_2Cr_2O_7 + 2NaNO_3 + H_2O$

2) При сливании растворов 3 и 4 изменится окраска за счёт образования коричневого I_2 и сине-зелёного Cr^{3+} .

$$2Na_2CrO_4 + 6NaI + 8H_2SO_4 = I_2 + 5Na_2SO_4 + Cr_2(SO_4)_3 + 8H_2O$$
 (уравнение 8)

3) Гном 1 принес в школу спиртовый раствор фенолфталеина (таблетки «пурген» могли быть в домашней аптечке).

Система оценивания:

 1)
 Определение катиона (натрия)
 2 балла

 Определение каждого из веществ 1 – 4 по 2 балла
 8 баллов

 Запись уравнений реакций по 1 баллу, 7 уравнений
 7 баллов

 2)
 Ответ на вопрос 2 (изменение окраски + уравнение (8))
 2 балла

 3)
 Ответ на вопрос 3
 1 балл

 Итого
 20 баллов

Решение 10-2 (М. А. Ильин)

1-2) В составе соединения A – основного компонента «болотного газа» – мольное соотношение C: Н составляет 1 : 4, следовательно, A – CH_4 (метан). При его сгорании на воздухе образуется углекислый газ и вода:

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$
.

3-4) **Б** — водородное соединение фосфора. Плотность **Б** по воздуху не превышает 3, следовательно, молярная масса **Б** не превышает 43,5, но меньше 87 г/моль ($29 \cdot 1,5 \le M_{\bf b} \le 29 \cdot 3$). Т. е. молекулярная формула **Б** — P_2H_4 дифосфин (дифосфин).

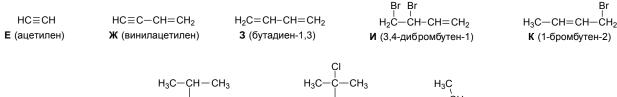
При сгорании дифосфина на воздухе образуется смесь фосфорных кислот, например:

$$2P_2H_4 + 7O_2 = 2H_3PO_4 + 2HPO_3$$
 или $2P_2H_4 + 7O_2 = 2H_4P_2O_7$.

5-6) Газ ${\bf B}$, не имеющий запаха, использующийся для газирования напитков и вызывающий помутнение известковой воды (раствора гидроксида кальция) с образованием белого осадка, – углекислый газ (${\rm CO}_2$):

$$Ca(OH)_2 + CO_2 = CaCO_3 \downarrow + H_2O$$

Газ Γ с отвратительным запахом, вызывающий почернение влажной бумажки, смоченной нитратом свинца (II), и имеющий молекулярную массу на 10 а. е. м. меньшую, чем молекулярная масса углекислого газа (т. е. 44-10=34 а. е. м.) – сероводород (H_2S):


$$Pb(NO_3)_2 + H_2S = PbS \downarrow + 2HNO_3$$

Газ Д, неохотно вступающий при комнатной температуре в большинство химических реакций и имеющий молекулярную массу 28 a. e. м. (34 - 6 = 28 a. e. м.) – азот (N₂). Некоторые примеры реакций, в которые вступает молекулярный азот:

$$\begin{split} N_2 + 3H_2 & \xrightarrow{t^{\circ} (500^{\circ}C), kt = PtunuFe} \rightarrow 2NH_3; \\ N_2 + 3 Mg & \xrightarrow{t^{\circ} (800^{\circ}C)} \rightarrow Mg_3N_2; \\ N_2 + CaC_2 & \xrightarrow{t^{\circ} (300^{\circ}C)} \rightarrow Ca(CN)_2 \\ (N_2 + CaC_2 & \xrightarrow{t^{\circ} (1000^{\circ}C)} \rightarrow CaCN_2 + C) \end{split}$$

7) Поскольку соединение Е обесцвечивает раствор бромной воды, а при пропускании его через аммиачный раствор хлорида меди (I) ([Cu(NH₃)₂]Cl) образуется красный осадок, вероятно, оно относится к классу алкинов, имеющих тройную С≡С связь в конце углеродной цепи. Таким алкином может быть ацетилен, образующийся при термическом дегидрировании метана. Уравнения реакций с участием Е:

Структурные формулы и названия соединений ${\bf E} - {\bf O}$:

$$H_3C-CH-CH_3$$
 $H_3C-C-CH_3$ H_3C CH H_3C $H_$

8) Уравнение окисления бутадиена-1,3 избытком раствора перманганата калия в кислой среде:

$$5C_4H_6 + 22KMnO_4 + 33H_2SO_4 \xrightarrow{t^\circ} 20CO_2 \uparrow + 11K_2SO_4 + 22MnSO_4 + 48H_2O.$$

Система оценивания:

1.	Молекулярная формула А	0,5 балла	
2.	Название А	0,5 балла	
	Уравнение реакции горения метана	0,5 балла	
3.	Молекулярная формула Б	0,5 балла	
4.	Название Б	0,5 балла	
	Структурная формула дифосфина	0,5 балла	
	Уравнение реакции горения дифосфина (одно из возможных) 0,5 балла		
	(уравнение реакции с образованием P_2O_5 и H_2O оценивается	в 0,25 балла)	
5.	Формулы газов В-Д по 0,5 балла	1,5 балла	

Названия В-Д по 0,5 балла 1,5 балла

Уравнения реакций с участием В и Г по 0,5 балла 1 балл

6. Уравнения реакций с участием Д по 0,5 балла 1 балл

(если в уравнениях реакций не указаны условия проведения реакций, ответ оценивается суммарно в 0,5 балла)

7. Структурные формулы Е-О по 0,5 балла 4,5 балла

Названия Е-О по 0,5 балла 4,5 балла

Уравнения реакций по 0,5 балла 1 балл

(При написании уравнения реакции с [Cu(NH₃)₂]Cl допускается написание соединения HC≡CCu, т. е. замещение одного «кислого» атома H в молекуле ацетилена)

8. Уравнения реакции окисления

1,5 балла

(если вместо уравнения реакции (запись со всеми стехиометрическими коэффициентами, реагентами и продуктами), приведена схема реакции (где нет стехиометрических коэффициентов и указаны все вещества-участники реакции), ответ оценивается в 0,5 балла)

Итого 20 баллов

Решение 10-3 (В. В. Апяри)

1) В качестве примера рассмотрим реакции, протекающие при определении аммонийного азота в нитрате:

a)
$$NH_4NO_3 + NaOH \longrightarrow NaNO_3 + NH_3 \cdot H_2O$$

6)
$$NH_3 \cdot H_2O \xrightarrow{t^0} NH_3 \uparrow + H_2O$$

Ион аммония является очень слабой кислотой Бренстеда, настолько слабой, что его прямое титрование невозможно. (Возможен также ответ, что поскольку аммиак в ряду слабых оснований проявляет весьма выраженные основные свойства, реакция титрования была бы обратима и не протекала количественно).

2)

$$\begin{split} & v_{\mathit{NH}_4} = v_{\mathit{HCl}}(\mathit{oбщee}) - v_{\mathit{HCl}}(\mathit{ocmamoчhoe}) = c_{\mathit{HCl}} V_{\mathit{HCl}} - c_{\mathit{HCl}}(\mathit{ocmamoчhoe}) V_{\mathit{p-pa}} = c_{\mathit{HCl}} V_{\mathit{HCl}} - c_{\mathit{HCl}}(\mathit{ocmamoчhoe}) V_{\mathit{p-pa}} = c_{\mathit{HCl}} V_{\mathit{HCl}} - c_{\mathit{HCl}}(\mathit{bestandeome}) V_{\mathit{p-pa}} = c_{\mathit{HCl}} V_{\mathit{HCl}} - c_{\mathit{HCl}}(\mathit{bestandeome}) V_{\mathit{p-pa}} = c_{\mathit{HCl}} V_{\mathit{HCl}} - c_{\mathit{HCl}} V$$

3) Обозначим недостающие цифры буквами x, y, z и t, которые принимают целые значения от 1 до 9. Тогда будем иметь:

$$c_{
m HCl}=0.5x23$$
 моль/л = $(0.5023+0.01x)$ моль/л $V_{
m p-pa}=2y0.0$ мл = $(200+10y)$ мл $c_{
m NaOH}=0.z849$ моль/л = $(0.0849+0.1z)$ моль/л $V_{
m NaOH}=1t.00$ мл = $(10+t)$ мл

Подставим эти выражения и другие имеющиеся данные в формулу для вычисления количества аммонийного азота:

$$\begin{split} v_{NH_4} &= c_{HCl} V_{HCl} - \frac{c_{NaOH} V_{NaOH}}{V_{an}} V_{p-pa} = (0,5023+0,01x) \cdot 60 - \frac{(0,0849+0,1z)(10+t)}{5} (200+10y) = \\ &= 30,138+0,6x-33,96-1,698\ y-3,396t-0,1698\ ty-40z-2zy-4zt-0,2zty = \\ &= 0,6x-3,822-1,698\ y-3,396t-40z-0,1698\ ty-2zy-4zt-0,2zty \end{split}$$

Пусть x=9 (то есть принимает максимально возможное значение), тогда 0.6x-3.822=1.578. Рассматривая приведенное выше выражение для расчета количества аммонийного азота, можно прийти к выводу, что если хотя бы одна из переменных y, t или z больше нуля (то есть равна по крайней мере единице), то все выражение примет отрицательное значение, что с химической точки зрения бессмысленно (количество вещества — величина неотрицательная). Поэтому эти переменные равны нулю и $v_{NH_4}=0.6x-3.822$. Что касается переменной x, то условию неотрицательности количества аммонийного азота удовлетворяют три ее значения — 7; 8 и 9.

Рассчитаем возможные значения количества аммонийного азота (поскольку известно, что анализируемое соединение — соль одноосновной кислоты, эти же значения будут соответствовать количеству самого соединения) и молярной массы соединения (молярная масса соединения может быть найдена по формуле $M = 1000 m/v_{NH_4}$ (ммоль) = $388,2/v_{NH_4}$). Результаты можно представить в виде таблицы:

X	v_{NH_4} ,ММОЛЬ	M, г/моль
7	0,378	1027
8	0,978	397
9	1,578	246

С привлечением данных элементного анализа установим возможную формулу соединения.

Массовая доля кислорода в соединении может быть рассчитана как

$$\omega(O) = 100\% - \omega(C) - \omega(H) - \omega(N) = 45,46\%$$

Для соединения $C_xH_vN_zO_k$ будем иметь:

$$x: y: z: k = \frac{29.3}{12}: \frac{2.44}{1}: \frac{22.8}{14}: \frac{45.46}{16} = 2.44: 2.44: 1.63: 2.84 = 6: 6: 4: 7$$

Поэтому формула соединения будет: $(C_6H_6N_4O_7)_n$.

Молярная масса такого соединения может быть выражена как M = 246n. Сравнивая это значение с рассчитанными в таблице, приходим к выводу, что единственно правильным вариантом является n = 1 при x = 9.

Таким образом, x = 9, y = z = t = 0; брутто-формула соединения: $C_6H_6N_4O_7$.

4) Попытаемся установить структурную формулу соединения. Искомое соединение - аммонийная соль, поэтому в ее состав должна входить группа ONH₄. Выделим ее отдельно: $C_6H_2N_3O_6(ONH_4)$. Соединение окрашено в желтый цвет в щелочной среде и практически бесцветно в кислой. Как правило, такие цветовые изменения имеют место при перераспределении электронной плотности в соединениях с системой сопряженных двойных связей. Соединение реагирует с глюкозой и сульфидом аммония с образованием продукта окрашенного в красный цвет. Поскольку общим свойством глюкозы и сульфида аммония является их восстановительная способность, приходим к выводу, что соединение содержит восстанавливающиеся группы. Кроме того, из условий задачи следует, что рассматриваемое соединение взрывчатое. Все эти свойства характерны для ароматических нитросоединений. Таким образом, можем записать следующую формулу: $C_6H_2(NO_2)_3(ONH_4)$. Она отвечает 6 изомерам, отличающимся положением заместителей:

5) Представленные соединения являются солями слабого основания аммиака и слабой кислоты. pH водного раствора соединений такого рода будет при прочих равных условиях тем ниже, чем сильнее была соответствующая кислота. Кислотные свойства тринитрофенолов обусловлены электронными эффектами нитро-групп. Для нитро-группы характерны –М- и –І-эффекты. –М-эффект представляет собой смещение электронной плотности по сопряженным двойным связям на большие расстояния. Он поэтому играет более существенную по сравнению с –І-эффектом роль, но проявляется только в случае, если нитро-группа сопряжена с фенольным гидроксилом, то есть находится в орто- или пара-положении по отношению к нему; –І-эффекты (поляризация σ-связей) значительно слабее и играют роль только на коротких расстояниях. Исходя из этих соображений, можно построить следующий ряд по возрастанию рН:

ONH₄

$$O_2N$$
 O_2N
 O_2N

- 6) Таким образом, анализируемое соединение представляло собой 2,4,6-тринитрофенолят аммония (пикрат аммония, даннит). Соответствующая кислота 2,4,6-тринитрофенол (пикриновая кислота). Кислотные свойства этого соединения обусловлены, как было сказано выше, –М-эффектами трех нитро-групп.
 - 7) Диссоциация пикрата аммония приводит к образованию пикрат-аниона:

ONH₄

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2
 O_2N
 O_2
 O_2N
 O_2
 O_2N
 O_2
 O_2N
 O_2

который участвует в следующем равновесии:

$$\begin{bmatrix} \neg O & O & O & O & O & O \\ \neg O & NO_2 & O_2N & NO_2 & O_2N & NO_2 \\ NO_2 & \neg O & O & NO_2 & NO_2 \\ NO_2 & \neg O & O & NO_2 & NO_2 \\ \end{bmatrix} \xrightarrow{NO_2} \begin{bmatrix} O & O & O & O & O \\ NO_2 & O_2N & NO_2 & NO_2 \\ \hline OH & NO_2 & NO_2 & NO_2 \\ \end{bmatrix}$$

желтый

практически бесцветный

(допускается указание не всех резонансных структур пикрата, но хотя бы одна с отрицательным зарядом на нитро-группе должна быть приведена).

8) Реакция с глюкозой:

ONH₄
O₂N
$$O_2$$
N
 O_2 CH₂OH
 O_2 N
 O_3 NH₂CH₂OH
 O_4 NH₂CH₂OH
 O_4 NH₃ + 3H₂O
 O_4 NO₂CHO
 O_4 NO₂CHO
 O_4 NO₂N
 O_5 NH₂CHON₄ + NH₃ + 3H₂O

СОЕДИНЕНИЕ КРАСНОГО ЦВЕТА

2-амино-**4**,**6**-динитрофенолят глюконат натрия (пикраминат натрия) натрия

(В случае написания участником продуктов восстановления нескольких нитрогрупп баллы не снимаются).

Система оценивания:

	1)	Уравнения реакций по 0,5 балла за каждое	2 балла
	Объяс	нение невозможности прямого титрования иона аммония	1 балл
	2)	Правильная итоговая формула	2 балла
	3)	Определение недостающих цифр в $V_{p\text{-}pa}$, c_{NaOH} , V_{NaOH} по 0,5 балла	
			1,5 балла
	Опред	еление недостающих цифр в C_{HCl}	1 балл
	Опред	еление брутто-формулы соединения	1 балл
	4)	Структурные формулы изомеров по 0,5 балла за каждую	3 балла
	5)	За каждую правильно упорядоченную (по возрастанию рН) п	ару соседних
членов ряда по 0,5 балла			2,5 балла
	6)	Название соли и кислоты по 0,5 балла	1 балл
	Объяс	1 балл	
	7)	Уравнение таутомерного равновесия	1,5 балла

(если приведено равновесие только с участием гидроксила, то задание следует оценить в 1 балл)

8) Уравнение реакции с глюкозой 1,5 балла
 Названия продуктов по 0,5 балла за каждое 1 балл
 Итого 20 баллов

Решение 10-4 (В. В. Ерёмин)

1)
$$\nu$$
(C) : ν (H) = (84.0/12) : (16.0/1) = 7 : 16.

X – гептан, C_7H_{16}

При ароматизации гептана образуется толуол (Y):

$$C_7H_{16} \rightarrow C_6H_5CH_3 + 4H_2$$

2) При охлаждении до 20 °C образуется смесь жидких гептана и толуола, а газообразный водород отделяется. Пусть исходное количество гептана – 1 моль.

После 1-го прохода через реактор в жидкой фазе получим: 0.15 моль $C_6H_5CH_3$ и 0.85 моль C_7H_{16} ;

после 2-го прохода:
$$\nu(C_6H_5CH_3)=0.15+0.85\cdot0.15=0.278$$
 моль, $\nu(C_7H_{16})=1-0.278=0.722$ моль;

после 3-го прохода:
$$\nu(C_6H_5CH_3)=0.278+0.722\cdot0.15=0.386$$
 моль, $\nu(C_7H_{16})=1-0.386=0.614$ моль.

Степень конверсии больше 30 % будет достигнута после 3-х проходов.

После 4-го прохода: $v(C_6H_5CH_3) = 0.386 + 0.614 \cdot 0.15 = 0.478$ моль, $v(C_7H_{16}) = 1 - 0.478 = 0.522$ моль;

после 5-го прохода:
$$\nu(C_6H_5CH_3)=0.478+0.522\cdot0.15=0.556$$
 моль, $\nu(C_7H_{16})=1-0.556=0.444$ моль.

Степень конверсии больше 50 % будет достигнута после 5-ти проходов.

3)
$$\nu(\mathbf{X}) = 10000 / 100 = 100$$
 моль

$$C_7H_{16}=C_7H_8+4H_2$$
 было $100~0~0$ прореаг. $x~x~4x$ стало $100-x~x~4x$

Общее количество:

$$(100-x)+x+4x=PV/RT=1.0\cdot27\cdot10^5/(8.314\cdot773)=420$$
 моль откуда $x=80$ моль. Парциальные давления:

$$p(H_2) = (4.80 / 420) \cdot 27 = 20.6 \text{ fap},$$

$$p(C_7H_8) = (80 / 420) \cdot 27 = 5.1 \text{ fap},$$

 $p(C_7H_{16}) = [(100-80) / 420] \cdot 27 = 1.3 \text{ fap}.$

Степень конверсии: 80 / 100 = 0.8 = 80 %.

Константа равновесия:
$$K_p = \frac{p(\mathrm{C_7H_8})p(\mathrm{H_2})^4}{p(\mathrm{C_7H_{16}})} = \frac{5.1 \cdot 20.6^4}{1.3} = 7.1 \cdot 10^5$$
.

- 4) При атмосферном давлении реакция происходит в неравновесных условиях, поэтому принцип Ле Шателье для оценки зависимости выхода от давления применять нельзя.
- 5) При нагревании до 600 °C происходит деалкилирование толуола с образованием бензола (Z).

$$C_7H_8 + H_2 \rightarrow C_6H_6 + CH_4$$
 было 5.1 20.6 0 0 прореаг. y y y y стало 5.1– y 20.6– y y y

Значение у находим из константы равновесия:

$$K_p = \frac{p(C_6H_6)p(CH_4)}{p(C_7H_8)p(H_2)} = \frac{y^2}{(5.1-y)(20.6-y)} = 1.7$$

y = 4.4. Степень превращения толуола в бензол: 4.4 / 5.1 = 0.86 = 86 %

6) Возьмём 1 моль C_7H_8 и a моль H_2 . По условию, в реакцию вступит 0.95 моль C_7H_8 :

$$C_7H_8 + H_2 \rightarrow C_6H_6 + CH_4$$
 было 1 a 0 0 прореаг. 0.95 0.95 0.95 0.95 0.95 c тало 0.01 a –0.95 0.95 0.95 0.95
$$K_p = \frac{p(C_6H_6)p(CH_4)}{p(C_7H_8)p(H_2)} = \frac{\nu(C_6H_6)\nu(CH_4)}{\nu(C_7H_8)\nu(H_2)} = \frac{0.95^2}{0.05(a-0.95)} = 1.7$$

a = 11.6. Искомое соотношение: $\nu(C_7H_8)$: $\nu(H_2) = 1$: 11.6.

Система оценивания:

 1) Формула гептана
 1 балл

 Уравнение с коэффициентами
 1 балл

 2) По 2 балла за пункты а) и б) с объяснением
 4 балла

 0 баллов за ответы: а) 2 прохода, б) 4 прохода

 0 баллов за правильные ответы без расчётов

3) Расчёт общего количества вещества по давлению

1 балл

Выражение для константы равновесия	1 балл			
Расчёт степени конверсии	1,5 балла			
Расчёт парциальных давлений 3 вещества по 0,5 балла	1,5 балла			
Расчёт константы равновесия	1 балл			
4) Любое разумное предположение	1 балл			
5) Уравнение реакции	1 балл			
Выражение для константы равновесия	1 балл			
Расчёт степени превращения с любыми данными из п. 3 (пусть даже неверными)				
	2 балла			
6) Правильный расчёт	3 балла			
Итого	20 баллов			

Решение 10-5 (И. В. Трушков)

1) Поскольку доля элемента \mathbf{Y} растет в ряду \mathbf{A} — \mathbf{E} , можно сделать вывод, что в \mathbf{A} отношение числа атомов \mathbf{Y} к числу атомов \mathbf{X} минимально. Обозначим формулы \mathbf{A} — \mathbf{E} через \mathbf{XY}_n . Отношение массы \mathbf{Y} к массе \mathbf{X} в этих соединениях равно: \mathbf{A} — 0,59; \mathbf{B} — 1,19; \mathbf{C} — 2,38; \mathbf{D} — 2,97; \mathbf{E} — 3,56. Отношение количества атомов \mathbf{Y} в соединениях \mathbf{B} — \mathbf{E} к количеству \mathbf{Y} в \mathbf{A} составляют: для \mathbf{B} 1,19/0,59 = 2, для \mathbf{C} — 4, для \mathbf{D} — 5, для \mathbf{E} — 6. Отсюда можно сделать вывод, что \mathbf{A} имеет состав \mathbf{XY} , \mathbf{B} — \mathbf{XY}_2 ; \mathbf{C} — \mathbf{XY}_4 , \mathbf{D} — \mathbf{XY}_5 , \mathbf{E} — \mathbf{XY}_6 , \mathbf{r} . е. \mathbf{X} — элемент 6 группы, а \mathbf{Y} — галоген. Рассмотрение возможных вариантов показывает, что \mathbf{X} — сера, а \mathbf{Y} — фтор. Поскольку соединения серы с фтором не могут содержать нечетное число атомов галогена, \mathbf{A} — $\mathbf{S}_2\mathbf{F}_2$, а \mathbf{D} — $\mathbf{S}_2\mathbf{F}_{10}$. Соединение состава $\mathbf{S}_2\mathbf{F}_2$ может иметь строение FSSF или $\mathbf{F}_2\mathbf{S}$ = \mathbf{S} . Димер \mathbf{B} имеет состав $\mathbf{S}_2\mathbf{F}_4$. Соблюдая правила валентности (для серы она может быть равна двум, четырем или шести), можно написать формулу $\mathbf{F}_3\mathbf{S}$ — $\mathbf{S}\mathbf{F}$ (возможен также вариант $\mathbf{F}_2\mathbf{S}$ = $\mathbf{S}\mathbf{F}_2$). Теперь можно написать структурные формулы всех этих соединений ($\mathbf{A}\mathbf{1}$ и $\mathbf{A}\mathbf{2}$ взаимозаменяемы). Реакция $\mathbf{S}_2\mathbf{F}_{10}$ с хлором дает, очевидно, соединение состава $\mathbf{S}\mathbf{F}_5\mathbf{C}\mathbf{1}$. Расчет содержания фтора в этой молекуле подтверждает данный вывод. Теперь мы можем написать структурные формулы всех этих соединений.

2) В молекуле SF_5Cl связь S-Cl является более слабой, чем связь S-F, следовательно именно атом хлора отрывается от F первоначально образовавшимся

радикалом. Далее радикал SF_5 присоединяется к пропену с образованием более стабильного вторичного радикала, который отрывает атом хлора от ${\bf F}$ и т. д.

$$R \cdot + SF_5CI \longrightarrow RCI + \cdot SF_5$$

$$SF_5 + SF_5 \downarrow CI$$

$$SF_5 + SF_5CI \longrightarrow SF_5 + \cdot SF_5$$

$$SF_5 + SF_5CI \longrightarrow SF_5 + \cdot SF_5$$

$$G$$

3) Соединение **H** содержит неизвестное количество атомов фтора, причем атомы фтора могут заменить в молекуле уксусной либо атомы водорода, либо атомы кислорода, либо и те, и другие (если мы не знаем, как протекает эта реакция, мы должны рассмотреть все эти варианты). Поскольку **H** содержит 67,9 % фтора, можно рассчитать молекулярную массу **H** при разном числе атомов фтора (n). При n = 1, $M_{\rm H} = 28$, при n = 2, $M_{\rm H} = 56$ и т. д. ($M_{\rm H} = 28n$). Тогда условию задачи удовлетворяет n = 3 и $M_{\rm H} = 84$, что соответствует формуле CH₃CF₃. Этот газ, подобно другим фреонам, обладает парниковым эффектом, но содержит только прочные связи C–H и C–F (нет C–Cl), поэтому не разрушает озоновый слой.

Система оценивания:

1) 8 структурных формул по 2 балла

16 баллов

Если вместо структурных формул, показывающих геометрию молекулы, приведены молекулярные формулы, ставится 1 балл вместо 2

2)	Структура продукта	2 балла
3)	Структурная формула ${f H}$	2 балла
Итого		20 баллов