ДЕВЯТЫЙ КЛАСС

В восьми пробирках, пронумерованных арабскими цифрами, выданы растворы следующих индивидуальных веществ: Na₂CO₃, NaCl, CaCl₂, Ca(OH)₂, KOH, K₂SO₄, H₂SO₄, HCl. Кроме того, в двух пробирках, пронумерованных римскими цифрами, находятся растворы смесей, состоящих каждая из четырех соединений, входящих в вышеуказанный набор.

Не используя никаких других реактивов, определите составы всех перечисленных растворов. Опишите последовательность Ваших действий и наблюдаемые явления. Напишите уравнения соответствующих реакций. Заполните следующую таблицу, где укажите, в каких случаях наблюдается образование осадка, а в каких — выделение газа:

	Na ₂ CO ₃	NaCl	CaCl ₂	Ca(OH) ₂	КОН	K ₂ SO ₄	H ₂ SO ₄	HCl	Число случаев	Число случаев ↑
Na ₂ CO ₃	_								· · ·	ı
NaCl		_								
CaCl ₂			_							
Ca(OH) ₂				_						
KOH					_					
K ₂ SO ₄						_				
H ₂ SO ₄										
HC1								_		

Решение

Вариантов решения поставленной задачи может быть несколько. Ниже приведен один из возможных:

	Na ₂ CO ₃	NaCl	CaCl ₂	Ca(OH) ₂	КОН	K ₂ SO ₄	H ₂ SO ₄	HCl	Число случаев ↓	Число случаев ↑
Na ₂ CO ₃	-		\	\			↑	\uparrow	2	2
NaCl		_							0	0
CaCl ₂	\		_		\rightarrow	медленно	медленно		4	0
Ca(OH) ₂	\			_					1	0
КОН			\		_				1	0
K ₂ SO ₄			↓ медленно			_			2	0
H ₂ SO ₄	1		медленно				_		2	1
HCl	1							_	0	1

¹⁾ В 7 чистых пробирок переносим по несколько капель растворов под номерами 2 − 7 и в каждую пробирку добавляем по несколько капель раствора № 1.

Наблюдения: В пробирке, где был раствор № 5, наблюдаем выпадение белого осадка.

Пробирки оставляем на несколько минут.

Наблюдения: Образования осадка или возникновения помутнения в остальных пробирках не наблюдается.

Вывод: В соответствии с составленной нами таблицей, число случаев выпадения осадка, равное 1 соответствует тому, что в пробирке № 1 находится КОН или $Ca(OH)_2$. В этом случае в пробирке № 5 — $CaCl_2$ или Na_2CO_3 соответственно:

$$CaCl_2 + 2KOH = Ca(OH)_2 \downarrow + 2KCl$$

 $Na_2CO_3 + Ca(OH)_2 = CaCO_3 \downarrow + 2NaOH$

Поскольку мы наблюдали выпадение обильного белого осадка (смесь в пробирке стала похожа на молоко), а не всего лишь помутнение, то, вероятно, мы имеем случай, когда в пробирке \mathbb{N} 1 KOH, а в пробирке \mathbb{N} 5 – CaCl₂. Проверим наше предположение.

2) Вымоем 6 использованных пробирок дистиллированной водой и перенесем в них по несколько капель растворов № 2 - 8, кроме № 5. В каждую пробирку внесем по несколько капель раствора № 5.

Наблюдения: В пробирке с раствором № 7 наблюдаем выпадение белого осадка.

Пробирки оставляем на несколько минут.

Наблюдения: В пробирках с растворами № 6 и № 8 выпадает кристаллический осадок.

Вывод: Таким образом, в пробирке № 5 – CaCl₂. Следовательно, в пробирке № 1 – KOH. Тогда в пробирке № 7 – Na₂CO₃, а в пробирках № 6, 8 – K₂SO₄ и H₂SO₄ или наоборот:

$$Na_2CO_3 + CaCl_2 = CaCO_3 \downarrow + 2NaCl$$

 $CaCl_2 + K_2SO_4 = CaSO_4 \downarrow + 2KCl$
 $CaCl_2 + H_2SO_4 = CaSO_4 \downarrow + 2HCl$

Их можно распознать, используя уже определенный нами раствор карбоната натрия (раствор № 7).

3) В две чистые пробирки добавим по несколько капель растворов № 6 и № 8. В каждую добавим по несколько капель раствора № 7.

Наблюдения: В пробирке с раствором № 6 наблюдаем выделение газа. В пробирке с раствором № 8 нет видимых изменений.

Вывод: В пробирке № 6 находится раствор H_2SO_4 , в пробирке № 8 – K_2SO_4 :

$$Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2\uparrow + H_2O$$

4) В три чистые пробирки вносим по несколько капель растворов № 2-4. В каждую добавляем по несколько капель раствора № 7.

Наблюдения: В пробирке с раствором № 2 наблюдаем выпадение осадка. В пробирке с раствором № 3 нет видимых изменений. В пробирке с раствором № 4 выделяется газ.

Вывод: В пробирке № 2 – Ca(OH)₂, в пробирке № 3 – NaCl, а в пробирке № 4 – HCl:

$$Na_2CO_3 + Ca(OH)_2 = CaCO_3 \downarrow + 2NaOH$$

 $Na_2CO_3 + 2HCl = 2NaCl + CO_2 \uparrow + H_2O$

Таким образом, мы имеем следующее соответствие:

№	1	2	3	4	5	6	7	8
Вещество	KOH	Ca(OH) ₂	NaCl	HCl	CaCl ₂	H_2SO_4	Na ₂ CO ₃	K ₂ SO ₄

5) После идентификации индивидуальных соединений проанализируем состав выданных растворов смесей. Возможных комбинаций по 4 соединения в каждой, таких чтобы они не реагировали между собой, всего две:

Na₂CO₃, NaCl, KOH, K₂SO₄

NaCl, K2SO4, H2SO4, HCl

Видно, что такие растворы будут сильно различаться по кислотности. Их идентификацию можно осуществить с помощью карбоната натрия (раствор № 7). Добавим в каждую из выданных смесей по несколько капель раствора № 7.

Наблюдения: В пробирке № I наблюдаем выделение газа. В пробирке № II нет видимых изменений.

Вывод: В пробирке № I – смесь: NaCl, K_2SO_4 , H_2SO_4 , HCl, в пробирке № II – смесь: Na₂CO₃, NaCl, KOH, K_2SO_4 :

$$Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2\uparrow + H_2O$$

 $Na_2CO_3 + 2HCl = 2NaCl + CO_2\uparrow + H_2O$

Система оценивания

Участник оценивается по следующим позициям:

- 1) Правильность идентификации индивидуальных соединений 8 соединений по 3 балла каждое: 24 балла
- 2) Правильность идентификации компонентов смесей 2 смеси по 8 балла: 16 баллов
- 3) Уравнения реакций: 5 баллов всего, независимо от числа уравнений (при этом каждое правильно записанное уравнение оценивается в 5/n баллов, где n общее число записанных уравнений; одинаковые уравнения считаются как одно)
- 4) Запись в ходе эксперимента: 3 балла
- 5) Таблица: 2 балла

Итого: 50 баллов