РЕШЕНИЯ 9 КЛАСС

Существует несколько вариантов решения этой задачи. Ниже приведен один из вариантов решения. Определение веществ в пробирках начинаем с обнаружения ионов аммония. Определение NH₃·H₂O.

В чистую пробирку переносим несколько капель раствора, находящегося в одной из анализируемых пробирок. Берем предметное стекло, смачиваем его водой и приклеиваем к нему фенолфталеиновую бумагу. Накрываем пробирку и помещаем её в водяную баню. Если в растворе есть аммиак, то фенолфталеиновая бумажка покраснеет. Аналогично поступаем с растворами, находящимися в других пробирках.

$$NH_3 \cdot H_2O \xrightarrow{t^\circ} NH_3 \uparrow + H_2O$$

Раствор аммиака будем использовать для того, чтобы различить между собой сульфаты марганца, цинка и алюминия.

Берем один из растворов, находящийся в оставшихся восьми пробирках, и по каплям приливаем его к анализируемому раствору (эту операцию повторяем со всеми оставшимися растворами). Предположим, что раствор, который мы приливали, хлорид бария. В этом случае будут выпадать осадки сульфата бария из растворов $MnSO_4$, $ZnSO_4$, Al_2 (SO_4)₃.

$$MnSO_4 + BaCl_2 = BaSO_4 \downarrow + MnCl_2$$

 $ZnSO_4 + BaCl_2 = BaSO_4 \downarrow + ZnCl_2$
 $Al_2 (SO_4)_3 + 3 BaCl_2 = 3BaSO_4 \downarrow + 2AlCl_3$

Выпавшие осадки не будут растворяться при нагревании. Таким образом мы выделили три пробирки в которых содержится сульфат-ион. В двух других пробирках выпадут осадки хлоридов свинца и серебра. В оставшихся двух пробирках никаких изменений не произойдет.

$$\begin{aligned} Pb(NO_3)_2 + BaCl_2 &= PbCl_2 \downarrow + Ba(NO_3)_2 \\ 2AgNO_3 + BaCl_2 &= 2AgCl \downarrow + Ba(NO_3)_2 \end{aligned}$$

Нагреваем пробирки с осадками на водяной бане. В одной из пробирок осадок будет растворяться. Растворение осадка в горячей воде свидетельствует о нахождении в пробирке $PbCl_2$, следовательно, в анализируемом растворе содержится $Pb(NO_3)_2$. Предположение о том, что раствор, который мы приливали – это $BaCl_2$ – правильно.

Это не может быть раствор KCl, так как осадки выпали еще в трех пробирках. Осадок, который не растворился при нагревании — это хлорид серебра и он должен растворяться в растворе аммиака. Подтвердим это. Добавим в пробирку по каплям раствор аммиака. Осадок растворяется. Значит в анализируемом растворе находится AgNO₃.

$$AgCl + 2NH_3 \cdot H_2O = [Ag(NH_3)_2]Cl + 2H_2O$$

Переходим к анализу растворов в пробирках, в которых при добавлении BaCl₂ выпали осадки сульфатов. В три пробирки переносим по несколько капель раствора, который находится над осадками или берем раствор из анализируемых пробирок и по каплям добавляем раствор аммиака в каждую пробирку. Наблюдаем, что происходит в пробирках. В растворе, содержащем ионы марганца, происходит выпадение белого осадка, который буреет на воздухе. Бурение осадка свидетельствует о нахождении в растворе ионов марганца, а следовательно и соли MnSO₄.

$$MnSO_4 + 2 NH_3 \cdot H_2O = Mn(OH)_2 \downarrow + (NH_4)_2SO_4$$

 $2Mn(OH)_2 + O_2 = 2MnO(OH)_2$

В пробирке, в которой содержится ион цинка, происходит образование осадка и его растворение в избытке реагента. Растворение осадка в избытке реагента, свидетельствует о наличии в растворе ионов цинка, а следовательно и соли ZnSO₄.

$$ZnSO_4 + 2 NH_3 \cdot H_2O = Zn(OH)_2 \downarrow + (NH_4)_2SO_4$$

 $Zn(OH)_2 + 4 NH_3 \cdot H_2O = [Zn(NH_3)_4](OH)_2 + 4H_2O$

В пробирке, в которой содержится ион алюминия, происходит образование осадка, который не растворяется в избытке реагента. Это свидетельствует о нахождении в растворе ионов алюминия, а, следовательно, и соли $Al_2(SO_4)_3$.

$$Al_2(SO_4)_3 + 6 NH_3 \cdot H_2O = 2Al(OH)_3 \downarrow +3(NH_4)_2SO_4$$

Осталось две пробирки с растворами, при добавлении в которые раствора хлорида бария никаких изменений не наблюдалось. Это могут быть пробирки, содержащие растворы хлорида калия и нитрата аммония. Для определения КСl добавляем в пробирку несколько капель раствора нитрата серебра. Выпадает осадок, который растворяется в избытке аммиака.

$$KCl + AgNO_3 = AgCl \downarrow + KNO_3$$

 $AgCl + 2NH_3 \cdot H_2O = [Ag(NH_3)_2]Cl + 2H_2O$

Раствор NH₄NO₃, находящийся в оставшейся пробирке, не будет взаимодействовать с растворами в других пробирках.

Ответы на теоретические вопросы

- **1.** Амфотерность это способность гидроксидов и оксидов некоторых элементов проявлять в зависимости от условий как кислотные, так и основные свойства.
- 2. Из веществ, находящихся в пробирках, амфотерными свойствами обладают гидроксиды и оксиды цинка, алюминия и свинца.

	NH ₃ ·H ₂ O	KCl	BaCl ₂	MnSO ₄	ZnSO ₄	Al ₂ (SO ₄) ₃	Pb(NO ₃) ₂	AgNO ₃	NH ₄ NO ₃
NH ₃ ·H ₂ O	-	-	-	↓бел. буреет	↓бел. р-ся в изб.	↓бел.	↓бел.	↓коричн р-ся в изб. аммиака	_
KCI	-	l	ľ	-	-	-	↓бел. р-ся <i>t</i> °	↓бел. р-ся в изб. аммиака	-
BaCl ₂	-	-	-	↓бел.	↓бел.	↓бел.	↓бел. р-ся <i>t</i> °	↓бел. р-ся в изб. аммиака	_
MnSO ₄	↓бел. буреет	-	↓бел.	_	_	_	↓бел.	↓бел.	_
ZnSO ₄	↓бел. р-ся в изб.	-	↓бел.	_	_	_	↓бел.	↓бел.	-
Al ₂ (SO ₄) ₃	↓бел.	-	↓бел.	_	_	_	↓бел.	↓бел.	_
Pb(NO ₃) ₂	↓бел.	↓бел. р-ся <i>t</i> °	↓бел. р-ся <i>t</i> °	↓бел.	↓бел.	↓бел.	_	_	_
AgNO ₃	↓коричн р-ся в изб.	↓бел. р-ся в изб. аммиака	↓бел. р-ся в изб. аммиака	↓бел.	↓бел.	↓бел.	-	-	-
NH ₄ NO ₃	-	-	-	_	_	_	_	_	_