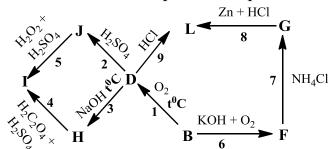
ОДИННАДЦАТЫЙ КЛАСС

Задача 11-1


Металлы \mathbf{A} и \mathbf{B} серебристо—серого цвета были открыты практически в одно время. \mathbf{A} легко подвергающийся различной обработке металл, использующийся в авиации и ракетостроении. Металл \mathbf{B} является компонентом многих сплавов, характеризующихся высокой прочностью, входящий в состав танковой брони. Для \mathbf{A} и \mathbf{B} самая устойчивая степень окисления +5.

При растворении эквимолярной навески металлов **A** и **B** массой 2,88 г в концентрированной серной кислоте, ее масса уменьшилась на 1,02 г. Молярный объем металла **A** равен $1,08\cdot10^{-5}$ м³/моль, плотность металла равна 8,57 г/см³. При обжиге металлов при температуре выше 500° С образуются вещества **C** белого и **D** красного цвета, частично растворимые в воде. **C** восстанавливается водородом до оксида **E** (25,6 % кислорода по массе), при этом массовая доля кислорода уменьшается на 15 % от начального значения.

вещество	I	J	L
ω(B), масс.%	31,2	38,9	36,9
$\omega(O)$, macc.%	49,1	48,9	11,6

Задания:

- 1. Определите вещества $\mathbf{A} \mathbf{E}$, напишите уравнения реакций растворения \mathbf{B} в концентрированной серной кислоте и восстановления \mathbf{C} .
 - 2. Напишите уравнения химических реакций, приведенных на схеме.

Окраска некоторых соединений

F	G	H	I	L
Белый	Белый	Белый	Голубой	Голубой

- 3. При реакции солянокислого раствора **G** с цинком сначала цвет раствора становится зеленым, затем голубым, через некоторое время он становится зелёным, потом фиолетовым, после чего окраска не меняется. Объясните этот процесс, написав протекающие при этом химические реакции.
 - 4. Назовите по номенклатуре ИЮПАК вещества **J**, **I**, **L**.

Задача 11-2

Неорганическое соединение \overline{X} образуется при реакции водного раствора вещества A с простым веществом \overline{b} .

Впервые вещество \mathbf{X} было получено в 1812 году. С тех пор многие химики пытались определить его химическую формулу, получая при этом разные результаты. Считалось, что в зависимости от условий проведения

реакции формула продукта может быть различной.

В таблице приведены массовые доли элементов $\mathbf{3}_1$, $\mathbf{3}_2$ и $\mathbf{3}_3$ в веществе \mathbf{X} в соответствии с формулами, предложенными разными исследователями (с использованием современных данных об атомных массах элементов):

Исследователь		Массовая доля элементов 9_{1} , 9_{2} и 9_{3} в веществе X			
Исследователь		$\omega(\mathfrak{I}_1)$, %	$\omega(\mathfrak{I}_2), \%$	$\omega(\mathfrak{I}_3)$, %	
Маршан, 1840	Ι	9,80	1,411	88,79	
Гладстоун, 1851	II	5,21	0,375	94,42	
Бунзен, 1852	III	6,80	0,734	92,47	
Чаттауэй, 1900	111	0,80	0,734	92,47	
Бунзен, 1852	IV	4,39	0,189	95,42	
Гей-Люссак, 1814					
Штальшмидт, 1862	\mathbf{V}	3,55	0,000	96,45	
Малле, 1879					
Гаяр, 1884	VI	5,53	0,448	94,02	

К началу 20 века было наконец достоверно установлено, что \mathbf{X} – индивидуальное соединение, содержащее 6,80 % $\mathbf{9}_1$, 0,734 % $\mathbf{9}_2$ и 92,47 % $\mathbf{9}_3$ (III), а остальные данные ошибочны.

Задания:

- 1. Определите элементы $\mathbf{9}_1$, $\mathbf{9}_2$ и $\mathbf{9}_3$. Запишите формулу вещества \mathbf{X} в соответствии с современными представлениями, а также брутто-формулы \mathbf{X} , определенные разными исследователями (\mathbf{I} – \mathbf{VI}).
 - 2. Напишите уравнение реакции получения Х.
 - 3. Почему элементный состав **X** было так сложно установить?

Веществу **X** часто приписывают формулу **V**, впервые предложенную Гей-Люссаком. Однако в чистом виде вещество с такой формулой было получено лишь в 1990 году при низкотемпературной реакции бинарного соединения **B**, содержащего 56,4% 9_1 , с соединением Γ , которое получается при фторировании избытка **B** при температуре -50 °C.

- 4. Напишите формулы В и Г.
- 5. В реакции **A** и **Б** при определенных условиях может образоваться продукт **Y**, содержащий 17,5 % \mathfrak{I}_1 . Установите формулу **Y**. Укажите условия образования этого соединения, ответ обоснуйте.

Задача 11-3

Одной из важнейших характеристик раствора является кислотность его среды, от которой зависит возможность или невозможность протекания многих химических процессов в этом растворе. Особое значение кислотность среды имеет в биохимических системах, т.к. для ферментов и многих других биологически активных молекул характерен строго определенный и небольшой интервал кислотности, внутри которого они могут функционировать. Поэтому исключительную важность имеют буферные системы — растворы, кислотность среды которых слабо изменяется от разбавления и добавления небольших количеств сильных кислот и оснований.

Количественным выражением кислотности среды является водородный показатель pH — безразмерная величина, равная отрицательному десятичному логарифму концентрации ионов водорода в растворе, ($pH = -lg[H^+]$) (здесь и далее в формулах необходимо использовать концентрации, выраженные в моль/л)

Поскольку определять кислотность растворов «голыми руками» человек не может для определения рН используют органические индикаторы — вещества, изменяющие свою окраску в зависимости от рН.

1. Чему равен рН дистиллированной воды? Изменится ли рН, если стакан с дистиллированной водой оставить на несколько дней на открытом воздухе? Объясните ваш ответ.

Один из самых известных индикаторов, который каждый из вас наверняка видел и использовал в школе — вещество $\bf A$, в прошлом использовавшееся в качестве слабительного. Вещество $\bf A$ получают конденсацией двух ароматических соединений $\bf b$ и $\bf b$ (массовые доли углерода 76,6 % и 64,9 % соответственно) в присутствии концентрированной серной кислоты.

При переходе среды водного раствора из нейтральной в щелочную \mathbf{A} меняет бесцветную окраску на малиновую. Однако в сильнощелочной среде раствор \mathbf{A} снова обесцвечивается, а в сильнокислой он становится оранжевым.

- 2. Приведите общеизвестные тривиальные названия веществ А, Б и В.
- 3. На рисунках изображены различные формы $\bf A$ ($\bf A1-\bf A4$), соответствующие определенным интервалам pH их существования:

Интервалы рН:

- a) pH < 0
- 6) 0 < pH < 8.2
- B) 8.2 < pH < 12
- Γ) pH > 13

Приведите в соответствие структурам A1 - A4 интервалы pH a - r.

- 4. Напишите, какой цвет в присутствии **А** будут иметь следующие растворы:
 - а). Разбавленный (~0,001 М) раствор NaOH
 - б). Разбавленный (~0,01 М) раствор НС1
 - в). Концентрированный (~10 М) раствор NaOH
 - г). Концентрированный (~10 М) раствор НС1
 - д). 0,01 M раствор NiCl₂
 - e). 0,01 M pacтвор Na₂CO₃, $K_{a2} = 4.7 \cdot 10^{-11}$

ж). 10^{-10} М раствор HCl

3). 0,01 M раствор K₂SO₄

Другой широко известный кислотно-основный индикатор имеет название метиловый оранжевый. Его синтезируют диазотированием ароматической сульфокислоты Γ по следующей схеме:

- 5. а) Напишите <u>уравнение</u> реакции превращения электронейтральной формы Γ в Д
 - б) Изобразите структурные формулы веществ Г, Д и Е
 - в) Укажите окраску метилового оранжевого в кислой (pH < 3) и в щелочной среде.
 - г) Изобразите резонансные структуры его «кислотной» формы.

<u>Задача 11-4</u>

Моноциклические углеводороды **A**, **B** и **C** имеют одну и ту же простейшую формулу $(C_x H_y)_n$, но совершенно разные свойства. Углеводороды **A** и **B** стабильны, однако при взаимодействии с электрофильными агентами **A** образует продукты замещения, а **B** дает продукты присоединения. Углеводород **C** в свободном виде неустойчив, но он и его производные могут существовать в комплексах переходных металлов в виде дианиона. Примером такого комплекса **C** является соединение **D**, которое можно получить из **B** с помощью последовательности реакций, приведенной на схеме ниже.

Соединение **D** имеет так называемую «полусэндвичевую» структуру, иногда его также сравнивают с табуретом для игры на фортепиано (piano stool); соединение **H** имеет два типа карбонильных групп в соотношении 2 : 1 и ось симметрии третьего порядка; все комплексы металлов в данной задаче удовлетворяют правилу Сиджвика (центральный атом металла в комплексе окружает себя таким числом лигандов, что общее число электронов в атоме металла будет таким же, как и в атоме ближайшего инертного газа).

Приведите структурные формулы соединений А-Ј, учитывая, что Ј -

изомер G, а I – изомер B.

Задача 11-5

Каталитическое гидрирование алкенов

Реакция взаимодействия алкенов с водородом в газовой фазе практически не идет даже при сильном нагревании, однако в присутствии некоторых переходных металлов она легко протекает при комнатной температуре, быстро и со 100 %—ным выходом. Для изучения механизма процесса был проведен ряд экспериментов при комнатной температуре 25 °C и нормальном давлении 1 атм (молярный объем газов при этих условиях равен 24,46 л/моль).

В первом эксперименте изучали поглощение водорода палладиевой фольгой массой 0,2048 г (плотность 12,02 г/см³). Была измерена зависимость объема водорода в реакционном сосуде с фольгой от времени:

		J' 1			
<i>t</i> , мин	0	10	25	35	50
<i>V</i> (H ₂), мл	20,0	15,0	7,5	3,5	3,5

- 1. Сколько объемов водорода может поглотить один объем палладия при этих условиях?
- 2. В результате реакции образуется нестехиометрическое соединение водорода с палладием PdH_x . Найдите x (с точностью до сотых).
- 3. При $x \ge 0.5$ гидрид PdH_x теряет металлическую проводимость и становится полупроводником. Через сколько минут после начала эксперимента это происходит?
- 4. В результате реакции выделилось 60 Дж теплоты. Рассчитайте энергию связи атомарного водорода с палладием, если энергия связи в молекуле H_2 равна 436 кДж/моль.
- В другом эксперименте изучали взаимодействие этилена и избытка тяжелого водорода D_2 на разных палладиевых катализаторах. Обнаружили, что в присутствии монокристалла металла реакция практически не идет, тогда как с металлической фольгой или наночастицами, нанесенными на инертный носитель, реакция протекает быстро и количественно, при этом образуется смесь трех продуктов с близкими молярными массами, имеющая плотность $1,35\ \Gamma/\pi$.
 - 5. Предположите, почему не идет реакция на монокристалле.
- 6. Из каких веществ состояла газовая смесь после реакции? В каком объемном соотношении были взяты C_2H_4 и D_2 для опыта, если весь исходный дейтерий перешел в продукты реакции?
 - 7. Механизм реакции включает 4 стадии:
 - а) $D_{2(r)} + Pd \rightarrow 2D_{(aдc. \ \text{на } Pd)}$
 - б) $C_2H_{4(\Gamma)}+Pd \rightarrow C_2H_{4(aдc. \ на \ Pd)}$
 - B)?
 - г) ?

Составьте уравнения двух заключительных стадий. Какая из них гарантированно является обратимой, а какая — лимитирующей? Кратко объясните.