Решения экспериментального тура

Девятый класс

РЕШЕНИЕ

(автор: Саморукова О. Л.)

Определение склянок с кислотой и щёлочью

Переносим несколько капель раствора из склянки с определяемым реактивом в чистую пробирку и добавляем к нему по каплям раствор $AgNO_3$, при этом наблюдается выпадение осадка. Если выпавший осадок бурого цвета, то это означает, что в склянке находится NaOH, если белый или сероватый, – то H_2SO_4 . При этом протекают реакции:

 $2NaOH + 2AgNO_3 = Ag_2O \downarrow + NaNO_3 + H_2O$

Осадок Ад2О↓ растворяется в избытке аммиака.

 $Ag_2O + 2NH_3 \cdot H_2O = 2 [Ag(NH_3)_2]OH + H_2O$

 $H_2SO_4 + 2AgNO_3 = Ag_2SO_4 \downarrow + 2HNO_3$ (осадок растворяется в горячей воде и избытке аммиака)

Определение состава смесей

Так как вариантов смесей может быть очень много, то мы приведем реакции определения для каждой соли и рассмотрим варианты анализа некоторых смесей. Проведение любого анализа начинают с растворения вещества и определения катионов и анионов, которые могут быть потеряны в виде газа в процессе растворения и дальнейшей работы. В нашем случае это могут быть ионы **NH4**⁺ и **CO3**²⁻.

Начинаем работу с проверки на $\mathbf{CO_3}^{2-}$. На предметное стекло помещаем небольшое количество предварительно перемешанной пробы и капаем $\mathbf{H}_2\mathbf{SO}_4$. Если в анализируемом веществе есть ионы $\mathbf{CO_3}^{2-}$, то проба начнет вспениваться, увеличиваться в объеме. Это значит, что выделяется газ $\mathbf{CO_2} \uparrow$ (*реакция 1, см. ниже*). При растворении пробы в воде также будет происходить выделение газа. Значит, что в предварительных испытаниях мы обнаружили соль $\mathbf{Na_2CO_3}$. Все индивидуальные вещества, которые даны в задании растворяются в воде. Если карбоната в смеси нет, но есть $\mathbf{Pb}(\mathbf{NO_3})_2$, то при ее растворении без нагревания во всех случаях кроме смеси с $\mathbf{Ba}(\mathbf{NO_3})_2$ в пробирке будет оставаться осадок галогенидов свинца — белый в случае $\mathbf{PbCl_2}$, который растворяется при нагревании пробирки на водяной бане и выпадает вновь при охлаждении раствора (*реакция 2*). Это позволяет обнаружить соль $\mathbf{Pb}(\mathbf{NO_3})_2$. Если в анализируемой пробе есть \mathbf{KI} , то после охлаждения раствора мы увидим образование жёлтых кристаллов $\mathbf{PbI_2}$ (*реакция 3*), что также служит подтверждением присутствия в смеси соли $\mathbf{Pb}(\mathbf{NO_3})_2$. Другие проверочные реакции для этой

Решения экспериментального тура

соли будут рассмотрены ниже.

Чтобы не потерять ион **NH**₄⁺, проводим реакцию его определения. Берем чистую пробирку, переносим в нее небольшую часть растворенной пробы, добавляем в неё 10–15 капель раствора NaOH и накрываем предметным стеклом, к которому прикреплена влажная фенолфталеиновая бумага. Помещаем пробирку в водяную баню. Если в пробе есть ион аммония, то через несколько минут фенолфталеиновая бумага окрасится в малиновый цвет (*реакция 4*). Таким образом мы обнаружили соль **NH**₄Cl. Растворив пробу и проведя предварительные испытания, выполняем реакции, которые позволяют доказать присутствие других солей.

В качестве примера рассмотрим схему анализа некоторых смесей.

Пример 1. Смесь: Pb(NO₃)₂, NH₄Cl

Начинаем работу с тщательного перемешивания пробы, её растворения и выполнения предварительных испытаний. Проверяем пробу на присутствие карбонат-иона. Так как выделения газа не наблюдаем, то делаем вывод, что соль Na₂CO₃ отсутствует. В чистую пробирку отбираем часть пробы, добавляем воды, перемешиваем и наблюдаем частичное растворение пробы. Пробирку нагреваем на водяной бане и наблюдаем полное растворение пробы. При охлаждении раствора наблюдаем выпадение белого осадка (реакция 2). Это свидетельствует о присутствии в смеси соли **Pb(NO₃)**2. Для подтверждения наших выводов отделяем раствор от осадка. К осадку добавляем немного воды, снова нагревам и к горячему раствору добавляем по каплям H₂SO₄. Наблюдаем выпадение осадка PbSO₄ (реакция 5), который растворяется в избытке щелочи (реакция 6) (BaSO₄ — не растворяется). Это ещё раз подтверждает присутствие в смеси соли **Pb(NO₃)**2 и отсутствие Ва(NO₃)2. Берем новую порцию раствора и открываем ион аммония как было описано в предварительных испытаниях (реакция 4). По покраснению фенолфталеиновой бумаги делаем вывод о присутствии в пробе иона аммония, а следовательно, и соли **NH₄Cl**.

Пример 2. Смесь: Ba(NO₃)₂, KI

Начинаем работу с тщательного перемешивания пробы, её растворения и выполнения предварительных испытаний. Проверяем пробу на присутствие карбонат-иона. Так как выделения газа не наблюдаем, то делаем вывод, что соль Na₂CO₃ отсутствует. В чистую пробирку отбираем часть пробы, добавляем воды, перемешиваем и наблюдаем полное растворение пробы. Часть растворенной пробы переносим в чистую пробирку и проверяем её на присутствие ионов аммония. Так как фенолфталеиновая бумага не покраснела, делаем

Решения экспериментального тура

вывод об отсутствии ионов аммония. Переносим в чистую пробирку новую порцию пробы и добавляем по каплям раствор H_2SO_4 . Наблюдаем выпадение белого осадка (*реакция 7*), который не растворяется в избытке кислоты, растворе аммиака и щёлочи. Это может быть только осадок $BaSO_4$. Значит мы открыли соль $Ba(NO_3)_2$. Теперь мы можем поступить двумя способами — это отделить осадок от раствора или взять новую порцию раствора пробы и добавить раствор $AgNO_3$. Отделяем осадок, а к раствору добавляем $AgNO_3$. Наблюдаем выделение осадка, который имеет жёлтую окраску (*реакция 8*). Жёлтый осадок — AgI. Таким образом мы открыли соль KI.

Пример 3. Смесь: Na₂CO₃, MnCl₂

Начинаем работу с тщательного перемешивания пробы, её растворения и выполнения предварительных испытаний. Проверяем пробу на присутствие карбонат-иона. На предметное стекло помещаем часть пробы и добавляем несколько капель H_2SO_4 . Наблюдаем вспенивание пробы и выделение газа (реакция 1). Выделяется газ CO_2 . Это значит, что мы открыли соль Na_2CO_3 . В чистую пробирку отбираем часть пробы, добавляем воды, перемешиваем и наблюдаем образование белого осадка (реакция 9). Часть растворенной пробы переносим в чистую пробирку и проверяем её на присутствие ионов аммония. Фенолфталеиновая бумага не покраснела, поэтому делаем вывод, что ионы аммония отсутствуют. Через некоторое время замечаем, что образовавшийся осадок начинает буреть, а затем становится черным (реакция 10). Мы открыли соль $MnCl_2$.

Проверочные реакции на соли

- 1. $Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2 \uparrow + H_2O$
- 2. Pb(NO₃)₂ + 2NH₄Cl (MnCl₂) = PbCl₂↓ + 2NH₄NO₃ белый
- 3. Pb(NO₃)₂ + 2KI = PbI₂↓ + 2KNO₃ жёлтый
- NH₄Cl + NaOH = (t^o, ф-ф) NH₃↑ + NaCl + H₂O
 (фенолфталеиновая бумага окрашивается в малиновый цвет)
- 5. $Pb(NO_3)_2 + H_2SO_4 = PbSO_4 \downarrow + 2HNO_3$
- 6. $PbSO_4 + 4NaOH = Na_2[Pb(OH)_4] + Na_2SO_4$
- 7. $Ba(NO_3)_2 + H_2SO_4 = BaSO_4 \downarrow + 2HNO_3$ (осадок нерастворим в кислоте, щёлочи и растворе аммиака)

Решения экспериментального тура

8.
$$KI + AgNO_3 = AgI \downarrow + KNO_3$$
 жёлтый

10. $2Mn(OH)_2 + O_2 = 2MnO(OH)_2 \downarrow$ (буреет на воздухе)

Система оценивания:

Открытие солей: 6 солей по 3 балла = 18 баллов

Определение склянок с кислотой

и щелочью: 2 склянки по 2 балла = 4 балла

Реакции обнаружения: 8 реакций по 1 баллу = 8 баллов

Итого: 30 баллов

Рекомендуемые варианты смесей:

1 вариант	Pb(NO ₃) ₂ , NH ₄ Cl	Ba(NO ₃) ₂ , KI	Na ₂ CO ₃ , MnCl ₂
2 вариант	Na ₂ CO ₃ , MnCl ₂	Pb(NO ₃) ₂ , NH ₄ Cl	Ba(NO ₃) ₂ , KI
3 вариант	Ba(NO ₃) ₂ , KI	Na ₂ CO ₃ , MnCl ₂	Pb(NO ₃) ₂ , NH ₄ Cl